
How Are Performance Issues Caused
and Resolved?

— An Empirical Study from a Design
Perspective

Yutong Zhao1, Lu Xiao1, Xiao Wang1, Lei Sun1,
Bihuan Chen2, Yang Liu3, Andre B. Bondi1,4

Stevens Institute of Technology1, Fudan University2,
Nanyang Technological University3,

Software Performance and Scalability Consulting LLC4

What is a Software Performance Issue?

• Software performance measures how effective is a software system with
respect to time constraints and allocation of resources. [1]

• Performance issue happens when software fai ls to meet such
requirements. Examples include:
• Long time execution
• Memory bloat
• Program blocking

• “Users are more likely to switch to competitors’ products due to
performance bugs than due to other general bugs.” [2]

2

Motivation
• Numerous prior studies investigated the causes and solutions of performance

issues, with two limitations:
• They usually only focused on a specific type of problems.
• They mostly focus on performance issues that can be fixed by localized code

changes.

“Most performance issues have their roots in poor architectural decisions
made before coding is done.”[3]

---Smith & Williams

• We found that a significants (33%) portion of performance issues in the systems we
examined require design-level optimization to ensure both performance
improvement and code quality.

3

Research Questions

RQ 1: What are the common root causes of real-life software performance
issues? Is each type well-addressed in the existing literature?

RQ 2: Are performance issues addressed by design-level optimization? If so,
how?

RQ3: What is the ROI (Return on Investment) for fixing performance issues?

4

Key Contributions

• This study revealed 8 common root causes and resolutions to performance
issues, and surveyed 60 related articles that investigated these root causes.

• This study provides empirical findings of design-level optimizations that are
necessary for addressing performance issues.

• This study measures the Return on Investment for addressing performance
issues.

• This study proposed a novel design structure modeling technique, named Diff
Design Structure Matrix, for analyzing design-level optimizations.

• This study contributes a rich, high-quality dataset of 192 performance issues.

5

Study Projects

This study is based on five widely-used, open sourced projects from:

• PDFBox: Java tool working with PDF documents;
• Avro: remote data serialization framework;
• Ivy: transitive package manager to resolve complex project dependencies;
• Collections: Java collections library of Set, List, Map;
• Groovy: Java-syntax-compatible object-oriented programming language for

Java platform.

Reasons: (1) In different domains;
 (2) Performance is important;

 (3) widely-used;
 (4) code and discussion available.

6

Study Approach

7

Step 1: Data Collection

Issue Tracking System:

• Keyword Selection: fast, slow, latency, speed, efficient, performance,
unnecessary, redundant, etc. (512 selected)

• Manual Verification: exclude false positives, e.g. “performance” can refer
to productivity of developers. (400 selected)

8

Step 1: Data Collection

Version Control System:

• Solution Collection: extracted by issue ID. (192 selected)

9

Step 2: Issue Annotation & Categorization

• Issue Report Transcript: 1) the symptoms, 2) the root cause, 3) the proposed
solution, 4) the profiling data, and 5) any other aspects of concerns (e.g.
maintainability issues).

• Code Revision Inspection: reveal the most essential logic of the root causes and
solutions to performance issues

• Literature Review: Keyword Search (Top 500)  Filtering (47)  Backward
Snowballing (92)
60 of them investigated root causes.

10

Localized Optimization

PDFBOX-1459

Localized Optimization: addressd by a
few lines of code revision in a single
source file.

11

Step 3: Design-Level Optimization Modeling and Analysis

AVRO-753

 Diff Design Structural Matrix (D-DSM)
Design-Level Optimization: a group of source
f i les revised s imultaneously for f ix ing
performance-related reasons.

Calculation of D-DSM:
• Generate two versions of the code base

(before and after the revision)
• Recover the structural dependencies

among source files of the two versions
• Compare the dependencies and highlight

the add/remove source files.

12

Step 4: Return on Investment Analysis
• Investment: 1) Number of involved developers; 2) Number of Discussions

• Return:

13

• We acknowledge that there are other meaningful measurements for
investment and return.

• We focused on these metrics because they provide meaningful
information and are easy to measure.

Study Result

Practitioners should be aware of the common root causes that recur in
different projects when they fix performance issues. This awareness also
helps practitioners to prevent performance issues in software design and
development, instead of treating performance as an after-thought.

RQ-1.1: What are the common root causes of performance issues?

IDS: Inefficient Data Structure
RC: Repeated Computation
ISC: Inefficiency under Special Cases
II: Inefficient Iteration
IAU: Inefficient API Usage
RDP: Redundant Data Processing
MTB: Multi-threaded Blocking
GIC: General Inefficient Computation Prevalence of Different Root Causes

14

Study Result

Practitioners should be aware of the common root causes that recur in
different projects when they fix performance issues. This awareness also
helps practitioners to prevent performance issues in software design and
development, instead of treating performance as an after-thought.

RQ-1.1: What are the common root causes of performance issues?

IDS: Inefficient Data Structure
RC: Repeated Computation
ISC: Inefficiency under Special Cases
II: Inefficient Iteration
IAU: Inefficient API Usage
RDP: Redundant Data Processing
MTB: Multi-threaded Blocking
GIC: General Inefficient Computation Prevalence of Different Root Causes

15

Study Result

Practitioners should be aware of the common root causes that recur in
different projects when they fix performance issues. This awareness also
helps practitioners to prevent performance issues in software design and
development, instead of treating performance as an after-thought.

RQ-1.1: What are the common root causes of performance issues?

IDS: Inefficient Data Structure
RC: Repeated Computation
ISC: Inefficiency under Special Cases
II: Inefficient Iteration
IAU: Inefficient API Usage
RDP: Redundant Data Processing
MTB: Multi-threaded Blocking
GIC: General Inefficient Computation Prevalence of Different Root Causes

16

Study Result

Practitioners should be aware of the common root causes that recur in
different projects when they fix performance issues. This awareness also
helps practitioners to prevent performance issues in software design and
development, instead of treating performance as an after-thought.

RQ-1.1: What are the common root causes of performance issues?

IDS: Inefficient Data Structure
RC: Repeated Computation
ISC: Inefficiency under Special Cases
II: Inefficient Iteration
IAU: Inefficient API Usage
RDP: Redundant Data Processing
MTB: Multi-threaded Blocking
GIC: General Inefficient Computation Prevalence of Different Root Causes

17

Study Result

Practitioners should be aware of the common root causes that recur in
different projects when they fix performance issues. This awareness also
helps practitioners to prevent performance issues in software design and
development, instead of treating performance as an after-thought.

RQ-1.1: What are the common root causes of performance issues?

IDS: Inefficient Data Structure
RC: Repeated Computation
ISC: Inefficiency under Special Cases
II: Inefficient Iteration
IAU: Inefficient API Usage
RDP: Redundant Data Processing
MTB: Multi-threaded Blocking
GIC: General Inefficient Computation Prevalence of Different Root Causes

18

Study Result
RQ-1.2: How well is each root cause addressed in the literature?

1) Proposed tools have not been tested and
compared to each other on large-scale, real-
world dataset;

2) Tools are limited to Java/C/C++ projects;
3) The availability and usability of these tools are

potential obstacles for practitioners to using
them.

Prevalence in Literature

19

Study Result
RQ-1.2: How well is each root cause addressed in the literature?

1) Proposed tools have not been tested and
compared to each other on large-scale, real-
world dataset;

2) Tools are limited to Java/C/C++ projects;
3) The availability and usability of these tools are

potential obstacles for practitioners to using
them.

Prevalence in Literature

20

Study Result
RQ-2.1: Are performance issues usually addressed by localized optimization
or complicated design-level optimization?

Practit ioners should be aware of the need for design-level
optimization. This need can be impacted by the nature of projects, as
well as the nature of the root causes.

21

Study Result

• Classic Design Patterns: The developers employ classical design patterns for
addressing the performance issues and achieving good design at the same time.

RQ-2.2: What are the typical design-level optimization patterns?

22

Study Result

• Change Propagation: The root cause of a performance issue is addressed in one
source file, namely the optimization core; and the optimization core propagates changes
to a group of source files that structurally connect to it.

RQ-2.2: What are the typical design-level optimization patterns?

23

Study Result

• Optimization Clone: The developers fix multiple instances of the same performance
root cause that are cloned in multiple locations in the code base.

RQ-2.2: What are the typical design-level optimization patterns?

Inefficient method,
getBoundingBox(), is
cloned in these
seven files.

24

Answer to RQ-2

• Parallel Optimization: The developers made parallel optimizations in multiple
locations that suffer from different root causes for resolving an issue.

RQ-2.2: What are the typical design-level optimization patterns?

1) PDFont: add cache to memorize
font type to avoid repeated
computation.

2) PDSimpleFont: avoid duplicate
has() lookups.

3) COSNumber: Use a direct table
lookup instead of a hash map to
speed up COSNumber.get().

4) ICU4HImpl: only allocate a new
buffer when one really is needed.

5) PDFStreamEngine: Use
StringBuilder and Arrays.fill()
instead of StringBuffer and an
explicit loop to speed up

25

Answer to RQ-2

• The applications of the four
patterns for addressing different
from each other.

• Inefficient iterations are excluded
in this discussion, because they are
only addressed by localized
optimization.

RQ-2.3: How prevalent is each design-
level optimization pattern, especially for
addressing different root causes?

26

Answer to RQ-2

• The majority (41% in Type-I, 27%
in Type-II) of design-level
optimizations are change
propagations.

• All different types of root causes
can be applied to address it.

27

(a) Change Propagation

Answer to RQ-2

• Optimization clone is not applied
for addressing inefficiency under
special cases (ISC).

• We conjecture that it is because
special cases should be treated
specifically so that the
optimization would not be cloned.

28

(b) Optimization Clone

Answer to RQ-2

• Classic design patterns are not
applied for addressing inefficient
data structure (IDS) and general
inefficient computation (GIC).

• We conjecture that it is because
data structure and algorithmic
optimization are usually located
inside a single source file.

29

(c) Classic Design Pattern

Answer to RQ-2

• Parallel optimization mainly
applies for general inefficient
computation (GIC), inefficient data
structure (IDS), and repeated
computation (RC).

• We conjecture it is because these
three root causes can be resolved
by short code revisions.

30

(d) Parallel Optimization

Answer to RQ-3
RQ-3.1 What is the overall ROI for addressing performance issues?

31

• Investment: 1) Number of
involved developers; 2)
Number of Discussions

• Improvement:

Answer to RQ-3

We conjecture that design-level optimization will provide benefits other than performance
improvement, e.g. readability and maintainability—73% of these issues employed design-level optimization.

RQ-3.2 How is the ROI of localized and design-level optimization compared to
each other?

32

(a) Investment (b) Improvement

Answer to RQ-3
RQ-3.3 How is the ROI of performance issues affected by different root causes?

33

ROI of Inefficient Data Structure

Legend

Limitations & Future Work
Limitations:
• We did not evaluate the

actual effectiveness and
usability of the fixing and
detecting tools.

• The performance
improvement is evaluated
based on the available
profiling data contained in
the issue reports.

• We acknowledge that there
are other meaningful
measurements for Return on
Investment.

Future Work:
• We plan to collect and use

the detecting and fixing
tools in prior studies in our
dataset.

• We will try to evaluate the
improvement of all the 192
performance issues by
executing the code.

• We will investigate the
impact of programming
language on performance
issues and their Return on
Investment.

34

Conclusion
• This study investigate 192 real-life performance issues, and identified eight

recurring root causes and typical resolutions.

• 33% of investigated performance issues require design-level optimization,
manifested in four different typical patterns.

• Localized optimizations provide higher Return on Investment than design-
level optimizations, based on measurable efforts and benefits.

• We argue that design-level optimization is necessary for achieving long-
term benefits, such as good design and maintenance quality.

35

References
[1] Cortellessa, V., & Frittella, L. (2007, September). A framework for automated generation of architectural feedback from
software performance analysis. In European Performance Engineering Workshop (pp. 171-185). Springer, Berlin,
Heidelberg.
[2] Zaman, Shahed, Bram Adams, and Ahmed E. Hassan. "A qualitative study on performance bugs." Proceedings of the
9th IEEE Working Conference on Mining Software Repositories. IEEE Press, 2012.
[3] Connie U Smith and Lloyd G Williams. Software performance anti-patterns. In Workshop on Software and
Performance, volume 17, pages 127–136. Ottawa, Canada, 2000.
[4] .Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Automating performance bottleneck detection using
search-based application profiling. In Proceedings of the 2015 International Symposium on Software Testing and Analysis,
pages 270–281. ACM, 2015.
[5] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented software. In Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering, pages
416–419. ACM, 2011.
[6] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: Detecting performance problems via similar
memory-access patterns. In Proceedings of the 2013 International Conference on Software Engineering, pages 562–571.
IEEE Press, 2013.
[7] Zhao, Y., Xiao, L., Xiao, W., Chen, B., & Liu, Y. (2019, May). Localized or architectural: an empirical study of
performance issues dichotomy. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion) (pp. 316-317). IEEE.

36

37

