
https://se.informatik.uni-wuerzburg.de/

Energy Efficiency Analysis of Compiler
Optimizations on the SPEC CPU 2017

Benchmark Suite
Norbert Schmitt, James Bucek, Klaus-Dieter Lange and Samuel Kounev

April 24, 2020

11th ACM/SPEC International Conference on Performance Engineering (ICPE), April 22-24

SPEC, the SPEC logo and the names SPECrate, SPECspeed, SPEC CPU, SPECpower, and PTDaemon are registered trademarks of the
Standard Performance Evaluation Corporation, reprint with permission.

2

Motivation

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

 More services are placed in the cloud

 Leading to an increasing amount and larger

data centers

 Data centers need an estimated 140 billion

kWh annually by 20201

1 J. Whitney and P. Delforge, „Data center efficiency assessment,“ NRDC, August 2014.

3

Motivation

 Cloud data centers can be made more efficient

 Intelligently placing or consolidating services

 Minimize resources through auto-scaling while satisfying performance demand

 Hardware can be made more efficient

 Dynamic voltage and frequency scaling

 Different C-States

 Software controls the hardware

 Running software has an influence on the energy efficiency of the

complete system2

 Different, but functionally identical software can have a different

energy efficiency while the performance does not change3

2 Klaus-Dieter Lange. 2009. The Next Frontier for Power/Performance Benchmarking: Energy Eiciency of Storage
Subsystems. In Proceedings of the 2009 SPEC Benchmark Workshop on Computer Performance Evaluation and
Benchmarking.

3 Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. 2012. Is software green? Application development
environments and energy efficiency in open source applications. Information and Software Technology 54, 1 (2012)

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

4

Contribution

 A first look at which factors make the software

susceptible to compiler optimizations

 Programming Language

 Application domain

 Based on the SPEC CPU 2017 benchmark suite

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

5

SPEC CPU 2017

 SPEC CPU 2017 benchmark suite is compute-intensive

 Different code and problem sizes
 C, C++ and Fortran, covering multiple programming paradigms

 1000 to 1.5 million lines of code

 Stressing CPU, memory and compiler

 Defined run and reporting rules for good repeatability

 43 benchmarks organized in four suites

 SPECspeed Integer and Floating-Point: Time required to process one unit of work

 SPECrate Integer and Floating-Point: Work per unit of time (Throughput)

 Each of the four suites produces two metrics

 Base: Each programming language, or combination, must use identical compiler settings

 Peak: Each benchmark can use different compiler settings

Controller System Under Test

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

6

Evaluation

 Relative comparison of base and peak

values of the SPECrate Integer suite

 Benchmarks with identical compiler settings

for base and peak runs are excluded

 Optimizing for performance can increase energy efficiency

 Example 500.perlbench_r

 15% reduction in runtime

 5.5% better energy efficiency

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

7

Evaluation

 23 benchmarks in SPECrate Integer and Floating-Point

suites in total:

 7 excluded due to identical compiler settings

 16 benchmarks listed

 3 benchmarks implemented and counting towards

two languages

Language EE improved Total Percentage

C 8 8 100%

C++ 6 7 85.7%

Fortran 1 4 25%

Percentage of improved energy efficiency

 Can C-like languages be better optimized for energy

efficiency?

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

8

Evaluation

Energy Efficiency Improved

Language Yes No Sum

C-like 14 1 15

Functional 1 3 4

Sum 15 4 19

Language EE improved Total Percentage

C 8 8 100%

C++ 6 7 85.7%

Fortran 1 4 25%

Percentage of improved energy efficiency

Fisher‘s exact test contingency table

 𝐻𝐻0: C-like and functional languages are equally likely to

show better energy efficiency

 𝐻𝐻0 must be rejected at the 5% level

 𝐻𝐻0 can not be rejected at the 1% level

 Possible reasons

1. Compiler allows fewer optimizations for Fortran

programs

2. Functional programming provides an already

energy-efficient programming style

3. Results are outliers

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

9

Evaluation

 23 benchmarks in SPECrate Integer and Floating-Point

suites in total:

 7 excluded due to identical compiler settings

 16 benchmarks listed

 Benchmarks were grouped into four application domains

App. Domain EE improved Total Percentage

Language
Transformation

2 2 100%

Modelling and
Simulation

3 7 42.8%

Artifical
Intelligence

1 1 100%

Others 6 6 100%

Percentage of improved energy efficiency

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

10

Conclusion

 Data centers consume large amounts of energy

 Use SPEC CPU 2017 benchmark suite to

 Check if the compiler settings influence the benchmarks in terms of energy efficiency

 See if the programming language is responsible for the improvement

 See if the application domain is responsible for the improvement

 Comparison of programming languages show promising results that C-like languages can be

easier optimized

 Application domain show nondistinctive results

 Further measurements on a broader set of software are necessary

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

Thank You!

https://se.informatik.uni-wuerzburg.de/
norbert.schmitt@uni-wuerzburg.de

	Energy Efficiency Analysis of Compiler Optimizations on the SPEC CPU 2017 Benchmark Suite
	Motivation
	Motivation
	Contribution
	SPEC CPU 2017
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Conclusion
	Foliennummer 11

