
https://se.informatik.uni-wuerzburg.de/

Energy Efficiency Analysis of Compiler
Optimizations on the SPEC CPU 2017

Benchmark Suite
Norbert Schmitt, James Bucek, Klaus-Dieter Lange and Samuel Kounev

April 24, 2020

11th ACM/SPEC International Conference on Performance Engineering (ICPE), April 22-24

SPEC, the SPEC logo and the names SPECrate, SPECspeed, SPEC CPU, SPECpower, and PTDaemon are registered trademarks of the
Standard Performance Evaluation Corporation, reprint with permission.

2

Motivation

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

 More services are placed in the cloud

 Leading to an increasing amount and larger

data centers

 Data centers need an estimated 140 billion

kWh annually by 20201

1 J. Whitney and P. Delforge, „Data center efficiency assessment,“ NRDC, August 2014.

3

Motivation

 Cloud data centers can be made more efficient

 Intelligently placing or consolidating services

 Minimize resources through auto-scaling while satisfying performance demand

 Hardware can be made more efficient

 Dynamic voltage and frequency scaling

 Different C-States

 Software controls the hardware

 Running software has an influence on the energy efficiency of the

complete system2

 Different, but functionally identical software can have a different

energy efficiency while the performance does not change3

2 Klaus-Dieter Lange. 2009. The Next Frontier for Power/Performance Benchmarking: Energy Eiciency of Storage
Subsystems. In Proceedings of the 2009 SPEC Benchmark Workshop on Computer Performance Evaluation and
Benchmarking.

3 Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. 2012. Is software green? Application development
environments and energy efficiency in open source applications. Information and Software Technology 54, 1 (2012)

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

4

Contribution

 A first look at which factors make the software

susceptible to compiler optimizations

 Programming Language

 Application domain

 Based on the SPEC CPU 2017 benchmark suite

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

5

SPEC CPU 2017

 SPEC CPU 2017 benchmark suite is compute-intensive

 Different code and problem sizes
 C, C++ and Fortran, covering multiple programming paradigms

 1000 to 1.5 million lines of code

 Stressing CPU, memory and compiler

 Defined run and reporting rules for good repeatability

 43 benchmarks organized in four suites

 SPECspeed Integer and Floating-Point: Time required to process one unit of work

 SPECrate Integer and Floating-Point: Work per unit of time (Throughput)

 Each of the four suites produces two metrics

 Base: Each programming language, or combination, must use identical compiler settings

 Peak: Each benchmark can use different compiler settings

Controller System Under Test

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

6

Evaluation

 Relative comparison of base and peak

values of the SPECrate Integer suite

 Benchmarks with identical compiler settings

for base and peak runs are excluded

 Optimizing for performance can increase energy efficiency

 Example 500.perlbench_r

 15% reduction in runtime

 5.5% better energy efficiency

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

7

Evaluation

 23 benchmarks in SPECrate Integer and Floating-Point

suites in total:

 7 excluded due to identical compiler settings

 16 benchmarks listed

 3 benchmarks implemented and counting towards

two languages

Language EE improved Total Percentage

C 8 8 100%

C++ 6 7 85.7%

Fortran 1 4 25%

Percentage of improved energy efficiency

 Can C-like languages be better optimized for energy

efficiency?

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

8

Evaluation

Energy Efficiency Improved

Language Yes No Sum

C-like 14 1 15

Functional 1 3 4

Sum 15 4 19

Language EE improved Total Percentage

C 8 8 100%

C++ 6 7 85.7%

Fortran 1 4 25%

Percentage of improved energy efficiency

Fisher‘s exact test contingency table

 𝐻𝐻0: C-like and functional languages are equally likely to

show better energy efficiency

 𝐻𝐻0 must be rejected at the 5% level

 𝐻𝐻0 can not be rejected at the 1% level

 Possible reasons

1. Compiler allows fewer optimizations for Fortran

programs

2. Functional programming provides an already

energy-efficient programming style

3. Results are outliers

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

9

Evaluation

 23 benchmarks in SPECrate Integer and Floating-Point

suites in total:

 7 excluded due to identical compiler settings

 16 benchmarks listed

 Benchmarks were grouped into four application domains

App. Domain EE improved Total Percentage

Language
Transformation

2 2 100%

Modelling and
Simulation

3 7 42.8%

Artifical
Intelligence

1 1 100%

Others 6 6 100%

Percentage of improved energy efficiency

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

10

Conclusion

 Data centers consume large amounts of energy

 Use SPEC CPU 2017 benchmark suite to

 Check if the compiler settings influence the benchmarks in terms of energy efficiency

 See if the programming language is responsible for the improvement

 See if the application domain is responsible for the improvement

 Comparison of programming languages show promising results that C-like languages can be

easier optimized

 Application domain show nondistinctive results

 Further measurements on a broader set of software are necessary

Motivation Contribution SPEC CPU 2017 Evaluation Conclusion

Thank You!

https://se.informatik.uni-wuerzburg.de/
norbert.schmitt@uni-wuerzburg.de

	Energy Efficiency Analysis of Compiler Optimizations on the SPEC CPU 2017 Benchmark Suite
	Motivation
	Motivation
	Contribution
	SPEC CPU 2017
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Conclusion
	Foliennummer 11

