

Sampling Effect on Performance Prediction of Configurable Systems: A Case Study

Juliana Alves Pereira, Mathieu Acher, Hugo Martin, Jean-Marc Jezequel

Configurable systems

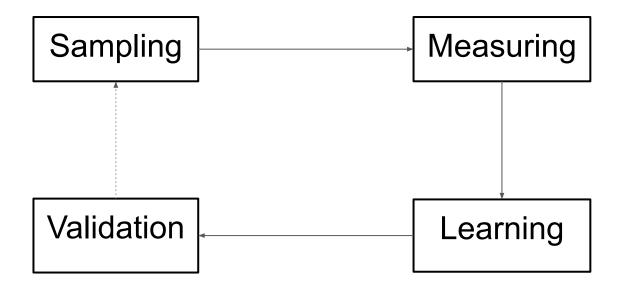
Pros

- Adaptive
- Lots of options

Cons

- Lots of options (and interactions)
- Increasingly complex

Machine learning to the rescue



Machine Learning: Sampling, Measure, Learning, Validating

Distance-Based Sampling of Software Configuration Spaces

 C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo and S. Apel, "Distance-Based Sampling of Software Configuration Spaces," 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 2019, pp. 1084-1094.

Proposing a new sampling solution : Distance-Based Sampling

Empirical study on 10 subject systems and 6 sampling strategies

Sampling strategies

- Coverage-based
- Solver-based
- Randomized solver-based

Random

- Distance-based
- Diversified distance-based

Subject systems

- 7z
- BerkeleyDB-C
- Dune MGS
- HIPAcc
- Java GC
- LLVM
- LRZIP
- Polly
- VPXENC
- x264

Experiment setup

- Machine learning based on multiple linear regression and feature-forward selection
- Mean Relative Error (MRE)

Results

8	Coverage-based		Solver-based			Randomized solver-based			Distance-based			Diversifi	ed distar	nce-based	Random			
	t = 1	t = 2	t = 3	t = 1	t = 2	t = 3	t = 1	t = 2	t = 3	t = 1	t = 2	t = 3	t = 1	t = 2	t = 3	t = 1	t = 2	t = 3
7z	51.2 %	33.8 %	22.6%	65.4%	58.2 %	25.2 %	55.1 %	37.2 %	16.7 %	85.9 %	27.3 %	16.6 %	74.3 %	16.3 %	17.2 %	58.2 %	15.1 %	9.9 %
BDB-C	122.9 %	29.0%	26.5 %	49.5 %	46.8 %	42.0%	45.1 %	46.1 %	18.1 %	320.0%	75.1 %	15.0 %	237.0%	12.7 %	9.3 %	121.3%	39.1 %	12.2%
Dune	15.5 %	12.5 %	11.4%	23.6%	15.1 %	11.8 %	43.3 %	16.8 %	11.2%	24.4 %	15.2 %	11.4%	21.5%	11.8 %	11.0 %	17.6%	11.5%	11.3 %
Hipacc	26.2 %	20.5 %	20.5 %	44.8 %	17.2 %	14.7 %	31.9 %	15.7 %	14.2 %	27.9%	19.0%	15.3 %	31.5%	14.5 %	14.0 %	19.9 %	13.9 %	13.4%
JavaGC	36.7 %	32.1%	23.7 %	54.2 %	59.3 %	35.8 %	41.9%	37.8 %	30.2 %	72.9 %	43.8 %	28.2 %	56.0 %	29.9%	13.2 %	55.8 %	13.9%	12.3 %
LLVM	6.2 %	6.2 %	5.8 %	9.5 %	5.5 %	5.2 %	5.6%	5.2 %	5.4%	5.8 %	5.2 %	5.3 %	5.9 %	5.3 %	5.2 %	5.6%	5.2 %	5.2 %
lrzip	27.2 %	28.2%	13.4 %	47.3 %	27.3 %	23.9 %	91.5%	36.0 %	25.0 %	162.5 %	39.7 %	21.9%	134.2 %	25.1 %	18.2 %	62.7 %	18.3 %	15.6%
Polly	19.7 %	12.7%	7.3 %	20.3 %	16.1 %	15.5 %	20.0 %	13.6 %	14.0 %	23.3 %	14.2 %	14.9 %	25.8 %	10.5 %	11.8 %	25.1 %	13.0 %	10.3 %
VP9	100.3 %	96.3 %	45.3 %	413.0%	224.2 %	80.8 %	470.2 %	389.1 %	94.5%	721.9%	125.0%	84.5 %	189.8 %	66.5 %	32.0 %	80.6 %	27.2 %	23.3 %
x264	20.9 %	11.9%	10.9 %	26.2 %	40.4 %	42.2 %	18.5 %	22.2 %	33.2 %	14.7 %	10.0 %	9.4%	12.6 %	8.8 %	9.0 %	13.5 %	9.2%	9.1%
Mean	42.7 %	28.3 %	18.7 %	75.4%	51.0 %	29.7 %	82.3 %	62.0 %	26.2 %	145.9 %	37.4%	22.2 %	78.9 %	20.1 %	14.1 %	46.0 %	16.6 %	12.3 %

- Coverage-based is dominant at low sample size
- Diversified distance-based is dominant on higher sample size
- Diversified distance-based is close to random sampling accuracy, even better in some cases

Is it true?

Replicating the experiment

Subject system : x264, video encoder

8	Coverage-based	Solver-based	Randomized	l solver-based	Dista	nce-based	Diversifi	ed distanc	Random		
	t=1 $t=2$ $t=3$	t=1 $t=2$ $t=$	3 t=1 t	t=2 $t=3$	t = 1	t=2 $t=$	3 t=1	t = 2	t = 3	t = 1	t=2 $t=3$
x264	20.9 % 11.9 % 10.9 %	26.2 % 40.4 % 42.2	% 18.5 % 22.	2.2% 33.2%	14.7 %	10.0% 9.4	% 12.6 %	8.8 %	9.0 %	13.5 %	9.2 % 9.1 %

Changing the input video : 17 videos

Changing the measured non-functional property

Experimental setup

What does vary?

- Sampling strategy (6 strategies)
- Sample size (3 sample size)
- Encoded video (17 videos)
- System configuration (1152 configurations)
- Measured property (Encoding time, encoding size)

What doesn't vary?

- Learning algorithm (Multiple Linear Regression)
- Learning algorithm hyperparameters
- Configurable Software (x264)
- Version
- Hardware

Results

High variation between videos, between non-functional properties

- Encoding time :
 - Similar results
 - Random sampling dominant over Diversified Distance-based sampling

- Encoding size :
 - Random sampling and randomized solver-based sampling overall dominant
 - Most strategies present good and similar accuracy for higher sample size

	t=1	t=2	t=3	t=1	t=2	t=3	t=1	t=2	t=3									
$x264_{0}$	18.2 %	13.9 %	13.4 %	24.0 %	27.0 %	27.5 %	22.3 %	19.9 %	24.3 %	16.5 %	12.7 %	10.6 %	16.3 %	8.8 %	8.2 %	16.7 %	9.2 %	8.2 %
x264 ₁	15.4%	13.2 %	12.1 %	26.9 %	23.7 %	24.9 %	21.4 %	21.5 %	23.2 %	17.3 %	14.2 %	9.5 %	17.4 %	9.8 %	8.7 %	16.1 %	9.2 %	8.7 %
x264 ₂	29.3 %	10.3 %	9.7 %	21.4 %	19.4 %	16.4 %	19.1 %	19.6 %	19.4 %	17.4 %	11.4%	9.8 %	17.6 %	9.6 %	9.3 %	15.3 %	9.5 %	9.3 %
x264 ₃	21.4 %	13.7 %	10.1 %	25.2 %	25.3 %	26.4 %	16.4 %	22.3 %	24.8 %	13.6 %	10.7 %	10.2 %	12.8 %	9.8 %	9.7 %	14.5 %	9.8 %	9.2 %
x264 ₄	21.8 %	12.3 %	14.4 %	23.9 %	21.2 %	22.0 %	18.3 %	21.1 %	22.5 %	14.2 %	11.7 %	9.7 %	13.9 %	10.1 %	8.9 %	13.9 %	9.4 %	8.8 %
x264 ₅	26.1 %	14.1 %	13.2 %	28.8 %	23.2 %	24.1 %	21.8 %	22.5 %	23.3 %	16.4 %	13.4 %	11.4 %	16.8 %	10.7 %	9.5 %	15.7 %	10.0 %	9.3 %
x264 ₆	25.9 %	18.1 %	8.6 %	23.6 %	28.5 %	29.1 %	18.2 %	21.6 %	24.9 %	13.7 %	9.9 %	9.0 %	13.2 %	8.8 %	7.8 %	12.6 %	8.0 %	7.3 %
x264 ₇	23.3 %	14.2 %	12.0 %	20.2 %	25.3 %	26.1 %	15.3 %	23.0 %	23.8 %	12.2 %	9.2 %	7.2 %	10.8 %	8.5 %	7.2 %	11.4%	8.2%	7.3 %
x264 ₈	20.8 %	13.1 %	11.5 %	20.3 %	22.7 %	23.6 %	16.7 %	23.4 %	23.4 %	12.6 %	10.4 %	9.6 %	11.1%	9.3 %	8.3 %	12.0 %	8.7 %	7.6 %
x2649	23.4 %	13.2 %	5.6 %	22.1 %	28.6 %	29.7 %	16.8 %	24.2 %	25.3 %	11.4 %	6.5 %	6.5 %	9.2 %	5.8 %	5.4 %	10.9 %	6.6 %	5.4 %
x264 ₁₀	21.9 %	12.3 %	9.3 %	22.6 %	23.2 %	24.0 %	17.9 %	22.4 %	24.3 %	14.0 %	10.2 %	9.7 %	13.5 %	9.4 %	8.9 %	14.0 %	9.0%	8.8 %
x264 ₁₁	21.1 %	12.6 %	10.3 %	25.7 %	23.5 %	23.8 %	20.0 %	21.1 %	24.7 %	13.3 %	10.8 %	10.4 %	13.0 %	10.1 %	9.7 %	13.9 %	9.4 %	9.1%
x264 ₁₂	25.4 %	13.4 %	10.4 %	26.2 %	21.2 %	21.6 %	19.8 %	20.6 %	20.9 %	16.2 %	13.7 %	10.9 %	16.3 %	11.4 %	9.1 %	15.0 %	9.7 %	8.5 %
x264 ₁₃	16.4 %	10.5 %	10.0 %	20.6 %	18.8 %	19.1 %	18.3 %	19.4 %	19.8 %	16.0 %	13.9 %	10.0 %	16.2 %	10.5 %	9.6 %	15.5 %	9.7 %	9.0 %
x264 ₁₄	20.7 %	16.9 %	15.8 %	34.3 %	39.5 %	40.6 %	28.5 %	29.7 %	32.4 %	18.1 %	11.1 %	9.6 %	18.4 %	7.8 %	7.3 %	17.4%	7.5 %	7.2 %
x264 ₁₅	26.2 %	12.7 %	11.1 %	23.2 %	26.5 %	27.2 %	20.3 %	22.7 %	25.1 %	15.1 %	11.9%	10.7 %	14.8 %	10.6 %	9.5 %	13.9 %	9.1%	8.9 %
x264 ₁₆	22.9 %	12.3 %	8.4 %	22.1 %	24.5 %	25.2 %	18.0 %	22.2 %	23.6 %	13.4 %	9.4%	8.9 %	12.6 %	8.5 %	7.8%	12.5 %	8.1 %	7.4%

23.9 %

Results table for encoding time

14.8 %

11.3 %

9.6%

14.3 %

9.4 %

Distance-based

Randomized solver-based

22.2%

19.4 %

Video

Mean

Coverage-based

13.3 %

22.4 %

24.2 %

10.9 %

24.8 %

25.4 %

Solver-based

8.5 % 14.2 %

Random

Diversified distance-based

	t = 1	t=2	t=3	t = 1	t=2	t=3	t = 1	t=2	<i>t</i> = 3	t = 1	t=2	t = 3	t = 1	t=2	t=3	t = 1	t=2	t=3
x264 ₀	12.3 %	11.6 %	11.1 %	12.3 %	11.4 %	11.3 %	25.1 %	12.7 %	13.3 %	25.3 %	12.5 %	10.6 %	23.3 %	10.6 %	9.2 %	13.1 %	9.8 %	9.1%
x264 ₁	4.0 %	3.9 %	3.8 %	3.1 %	3.8 %	3.8 %	1.7 %	3.8 %	3.8 %	4.0 %	4.0 %	3.8 %	3.9 %	3.8 %	3.8 %	3.9 %	3.8 %	3.8 %
x264 ₂	14.9 %	14.3 %	4.8 %	5.1%	4.7 %	4.7 %	15.9 %	4.7 %	4.6 %	14.3 %	14.0 %	10.2 %	13.8 %	12.0 %	4.7 %	7.6 %	4.7 %	4.6 %
x264 ₃	8.6 %	8.3 %	7.8 %	8.1 %	7.3 %	7.4 %	11.2 %	7.6 %	7.4 %	9.9 %	9.3 %	8.0 %	9.6 %	8.3 %	7.5 %	7.7 %	7.4 %	7.3 %
x264 ₄	18.4 %	16.7 %	6.6 %	4.5 %	6.8 %	6.8 %	14.1 %	6.7 %	6.7 %	17.5 %	16.7 %	7.0 %	16.9 %	6.9 %	6.9 %	7.8 %	6.9 %	6.9 %
x264 ₅	11.3 %	11.0 %	10.8 %	4.9 %	6.6 %	5.7 %	12.3 %	9.4 %	4.8 %	11.8 %	11.5 %	10.9 %	11.6 %	10.6 %	10.0 %	9.4 %	6.4 %	5.2 %
x264 ₆	24.6 %	5.3 %	5.2 %	5.4 %	5.4 %	5.3 %	25.6 %	5.3 %	5.3 %	17.6 %	16.8 %	5.5 %	16.1 %	5.4 %	5.4 %	6.3 %	5.3 %	5.3 %
x264 ₇	9.4 %	9.0 %	8.7 %	8.1%	8.4 %	8.3 %	8.4 %	8.2 %	8.2 %	9.4 %	9.4 %	8.9 %	9.3 %	8.6 %	8.5 %	9.1 %	8.4 %	8.3 %
x264 ₈	10.4 %	9.7 %	8.9 %	8.7 %	8.0 %	8.1 %	11.2 %	7.6%	8.0 %	12.4 %	12.0 %	9.5 %	12.0 %	9.9 %	8.5 %	8.5 %	8.3 %	8.2 %
x2649	11.6 %	10.5 %	9.5 %	7.6 %	8.6 %	8.5 %	6.9%	8.4 %	8.4 %	11.3 %	11.6 %	9.6 %	10.8 %	9.7 %	8.7 %	8.8 %	8.5 %	8.4 %
x264 ₁₀	5.2 %	5.2 %	4.9 %	5.2 %	5.0 %	4.8 %	5.0 %	4.6 %	4.6 %	6.0 %	5.8 %	5.0 %	5.7 %	5.1 %	4.7 %	4.9 %	4.6 %	4.6 %
x264 ₁₁	12.4 %	11.8 %	11.1 %	11.1 %	10.8 %	11.0 %	8.8 %	9.9 %	11.4 %	12.8 %	11.8 %	9.0 %	12.0 %	10.2 %	8.6 %	10.9 %	9.4%	8.8 %
x264 ₁₂	25.7 %	3.6 %	3.6 %	5.3 %	3.5 %	3.6 %	28.9 %	3.6 %	3.5 %	16.5 %	14.6 %	3.5 %	15.4 %	3.5 %	3.4 %	4.8 %	3.5 %	3.4 %
x264 ₁₃	4.7 %	4.7 %	4.6 %	4.5 %	4.7 %	4.7 %	5.4 %	4.8 %	4.7 %	5.1 %	5.0 %	4.8 %	5.0 %	4.7 %	4.7 %	5.0 %	4.7 %	4.6 %
x264 ₁₄	10.2 %	9.6 %	9.4 %	5.1 %	7.4 %	8.8 %	3.6 %	9.6 %	9.5 %	10.6 %	10.6 %	10.0 %	9.8 %	9.6 %	9.6 %	9.3 %	9.0 %	9.5 %
x264 ₁₅	4.1%	4.0 %	4.0 %	7.5 %	4.5 %	4.3 %	40.9 %	4.3 %	4.2 %	21.7 %	8.3 %	4.1 %	19.1 %	4.1 %	4.1 %	5.4 %	4.2 %	4.1 %
x264 ₁₆	8.3 %	8.1 %	7.9 %	7.7 %	7.8 %	7.6 %	9.2 %	7.7%	7.6 %	8.8 %	8.7 %	8.2 %	8.7 %	7.9 %	7.7 %	8.3 %	7.7 %	7.6 %

6.8 %

Results table for encoding size

12.6 %

10.7 %

7.6%

12.0%

7.7%

6.8 %

7.7%

Distance-based

Diversified distance-based

Randomized solver-based

Video

Mean

11.5 %

8.7 %

Coverage-based

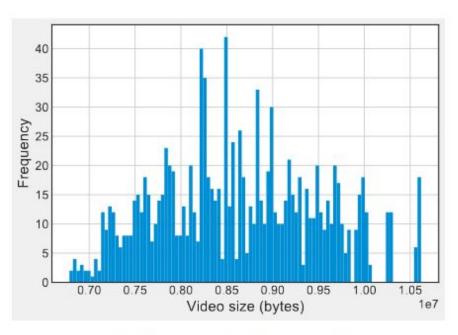
Solver-based

6.7 %

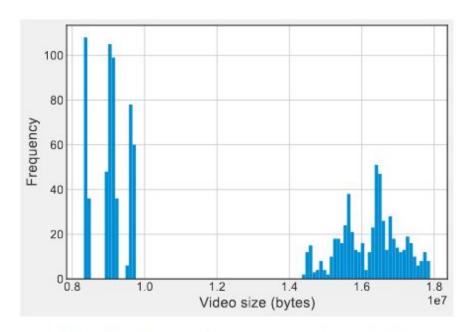
6.8 %

6.7 %

13.8 %


7.0%

7.2%


11

Random

Results

(a) flower_sif.y4m $x264_2$

(b) 720p50_parkrun_ter.y4m x264₁₅

Replicability

Fully replicable experiment

Dataset for video encoding time and size available

 Docker image with all data and scripts for performance prediction and results aggregation: https://github.com/jualvespereira/ICPE2020

What's next?

How do version and hardware affect the sampling effectiveness?

How does machine learning technique affect the sampling effectiveness?

 How to leverage the fact that some sampling strategies overperform by focusing on important options?

Conclusion

Random sampling is a strong baseline, hard to challenge

Diversified distance-based sampling is a strong alternative

 Researchers should be aware that effectiveness of sampling strategies can be biased by inputs and performance property used