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● C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo and S. Apel, "Distance-Based 
Sampling of Software Configuration Spaces," 2019 IEEE/ACM 41st International 
Conference on Software Engineering (ICSE), Montreal, QC, Canada, 2019, pp. 
1084-1094.
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● C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo and S. Apel, "Distance-Based 
Sampling of Software Configuration Spaces," 2019 IEEE/ACM 41st International 
Conference on Software Engineering (ICSE), Montreal, QC, Canada, 2019, pp. 
1084-1094.

● Proposing a new sampling solution : Distance-Based Sampling

● Empirical study on 10 subject systems and 6 sampling strategies
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Subject systems
● 7z
● BerkeleyDB-C
● Dune MGS
● HIPAcc
● Java GC
● LLVM
● LRZIP
● Polly
● VPXENC
● x264

Experiment setup

● Machine learning based on multiple 
linear regression and feature-forward 
selection

● Mean Relative Error (MRE)
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Results

● Coverage-based is dominant at low sample size
● Diversified distance-based is dominant on higher sample size
● Diversified distance-based is close to random sampling accuracy, even better 

in some cases
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Is it true?
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● Changing the measured non-functional property
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What does vary?

● Sampling strategy (6 strategies)
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● System configuration (1152 configurations)
● Measured property (Encoding time, encoding size)

10



Experimental setup
What does vary?

● Sampling strategy (6 strategies)
● Sample size (3 sample size)
● Encoded video (17 videos)
● System configuration (1152 configurations)
● Measured property (Encoding time, encoding size)

What doesn’t vary?

● Learning algorithm (Performance-Influence Model)
● Learning algorithm hyperparameters
● Configurable Software (x264)
● Version
● Hardware

10



Experimental setup
What does vary?

● Sampling strategy (6 strategies)
● Sample size (3 sample size)
● Encoded video (17 videos) 🔴
● System configuration (1152 configurations)
● Measured property (Encoding time, encoding size) 🔴

What doesn’t vary?

● Learning algorithm (Performance-Influence Model)
● Learning algorithm hyperparameters
● Configurable Software (x264) 🔴
● Version
● Hardware

10



Experimental setup
What does vary?

● Sampling strategy (6 strategies)
● Sample size (3 sample size)
● Encoded video (17 videos) 🔴
● System configuration (1152 configurations)
● Measured property (Encoding time, encoding size) 🔴

What doesn’t vary?

● Learning algorithm (Performance-Influence Model)
● Learning algorithm hyperparameters
● Configurable Software (x264) 🔴
● Version 🔵
● Hardware 🔵

10



Results

11



11Results table for encoding time



11Results table for encoding time



11Results table for encoding time



11Results table for encoding time



11Results table for encoding time



11Results table for encoding time



11Results table for encoding time



11Results table for encoding size



11Results table for encoding size



11Results table for encoding size



11Results table for encoding size



11Results table for encoding size



11Results table for encoding size



Results

11



Results
● High variation between videos, between non-functional properties

11



Results
● High variation between videos, between non-functional properties

● Encoding time : 
○ Similar results
○ Random sampling dominant over Diversified Distance-based sampling

11



Results
● High variation between videos, between non-functional properties

● Encoding time : 
○ Similar results
○ Random sampling dominant over Diversified Distance-based sampling

● Encoding size : 
○ Random sampling and randomized solver-based sampling overall dominant
○ Most strategies present good and similar accuracy for higher sample size
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Replicability
● Fully replicable experiment

● Dataset for video encoding time and size available

● Docker image with all data and scripts for performance prediction and results 
aggregation : https://github.com/jualvespereira/ICPE2020
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What’s next?
● How do version and hardware affect the sampling effectiveness?

● How does machine learning technique affect the sampling effectiveness?

● How to leverage the fact that some sampling strategies overperform by 
focusing on important options?
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Conclusion
● Random sampling is a strong baseline, hard to challenge

● Diversified distance-based sampling is a strong alternative

● Researchers should be aware that effectiveness of sampling strategies can 
be biased by inputs and performance property used
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