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Introduction

» Unlike traditional software frameworks, Event Sourcing
framework is dynamic in Performance Engineering sense in
that each request can have different resource demands

» The requests in Event Sourcing systems have to replay all the
change to the state (called events) to execute, which
causes requests to have different resource demands

» In this paper an approach to model this behavior along with
two possible architecture is investigated



Research Method

» Software Performance Engineering (SPE) Methodology,

Describe Software Execution Model (UML sequence diagram,
Execution graph ...)

to

Derive System Execution Model (Queuing network, Process
algebra...)

» Use measurements to fill the individual components of the
model which could then be used to predict performance
metrics of the overall system




Event Sourcing (and possible

architectures)
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Layered Queuing Networks

» Queuing theory is the mathematical study of the
congestion and delays of waiting for requests

» ON models do not account for software contention, i.e.
stations are not considered as both client and servers

» Layered Queuing Networks simulate systems with
communication between the stations



Layered Queuing Networks
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Modeling Components

» CPU and disk as processors representing actual hardware resources

» Aggregates as task/s with entries containing resource demands only on the CPU
processor as it only works on the events available in memory

» Event and Command Handlers as tasks containing only delays and no resource demands
as they just redirect requests

» Event store or database that has resource demand on CPU processor and also connects
to disk processor through disk task

» Disk task to simulate disk handlers for different requests
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Measuring Service Demands

» Service demand is the time that a specific request class
spends at the resource that is servicing it

» Queuing theory specifies rules to calculate it
» Little’s Law
» Utilization Law (specific case of Little’s Law)
» Forced Flow Law



Utilization Law

» Utilization law:
Dc,i = Uc,i / Xc

Uc;— utilization at the station/s at a resource

X.— Throughput of whole system



Forced Flow Law

» Forced Flow Law
Vc,i - ><c,i/Xc

V¢,;— no. of visits at station |
X — Throughput at station |

Dei=Ve, ™ S

C,=

Sc;—service time per visit at station |



Measurement Tools
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Performance Monitor

» Counters that can be used:

>
>
>

v

% CPU idle
% disk time
Disk tps

% CPU SQL Server instance
Transactions/sec
Write transactions/sec

Overall throughput
Request processing time




Applying Queuing Theory Laws

» Calculate service demand for CPU resource
CPU Utilization / Overall throughput

» Service demand for disk resource
Disk Utilization / Overall throughput
Or

Disk tps / Overall throughput * service time
/ request
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Applying Queuing Theory Laws

» Service demand for CPU resource only DB
CPU Utilization of DB / Overall throughput <

Ord

gte

» Application Service Demand = total
execution time - DB service demand
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Measurement vs. Prediction
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Measurement vs. Prediction

Processing Time
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Conclusion and Future Work

» Event Sourcing systems can be modeled by spreading out the
resource demand of the request with largest number of events
evenly across entire life cycle of aggregate

» The two possible architectures can be simulated by separating out
tasks such as aggregate and event store so that separate queues
handle the requests

» Future work envisioned is using the modeling technique described
here and applying it on larger systems
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