Aggregate Architecture Simulation in Event-Sourcing
Applications using Layered Queuing Networks

Gururaj Maddodi, Slinger Jansen, and Michiel Overeem

W VRIJE
= U = Utrecht University VU % UNIVERSITEIT
NS AMSTERDAM

AAMUSE Project

amuse




Introduction

» Unlike traditional software frameworks, Event Sourcing
framework is dynamic in Performance Engineering sense in
that each request can have different resource demands

» The requests in Event Sourcing systems have to replay all the
change to the state (called events) to execute, which
causes requests to have different resource demands

» In this paper an approach to model this behavior along with
two possible architecture is investigated



Research Method

» Software Performance Engineering (SPE) Methodology,

Describe Software Execution Model (UML sequence diagram,
Execution graph ...)

to

Derive System Execution Model (Queuing network, Process
algebra...)

» Use measurements to fill the individual components of the
model which could then be used to predict performance
metrics of the overall system




Event Sourcing (and possible

architectures)

Create/ /\\ i i
Modify P4 T ! 1 oar |
Requests ! |
. | . Single
ﬂ i i ) | I_L . Aggregate
Events " : l Lire 1 Line 2 —— L inen Entities :

I
I
<<Entity>> ] | <<Entity>> |1 /
Client g| Event : /
________________ I
Storage /
/
\_ g

. e
Events v

| State [
<:> State
Storage
View 8
Requests

Multiple
Aggregate




Layered Queuing Networks

» Queuing theory is the mathematical study of the
congestion and delays of waiting for requests

» ON models do not account for software contention, i.e.
stations are not considered as both client and servers

» Layered Queuing Networks simulate systems with
communication between the stations



Layered Queuing Networks

client
entry

\

L/

Service Demand - S
Delay - Z
Avg. no. of calls - c

entry

el

entry
e2

Task T

m - Multiplicity

d - discipline

host H

m - Multiplicity
d - discipline




Modeling Components

» CPU and disk as processors representing actual hardware resources

» Aggregates as task/s with entries containing resource demands only on the CPU
processor as it only works on the events available in memory

» Event and Command Handlers as tasks containing only delays and no resource demands
as they just redirect requests

» Event store or database that has resource demand on CPU processor and also connects
to disk processor through disk task

» Disk task to simulate disk handlers for different requests



System Execution Mo

Aggreegate)

Command Orderiiem Eveni Ewant
Harndiar Agpresate Handier Siore DB
T
Activata I : | :
“rastelear aggragate 1 Aclivate comesl ribe mwend |
=emmand e ayvenl lemplate (OrderCreated) !
= |0t
P ] [[T=3]
Sdraam}
e — —— —
Aectivate I i I I
aggrepale 4 Activate corest Read guents
.-'\I:.:dlbcm —_— avent templates L (OrtarCreated) |
mimand a [GITJET
e - — oo ] Hern
o T e e IJSt-'Ear'll-
":"‘:‘"::E "“‘:'"T“ Wisa event 1
eward lesnpkie 1 2
Tl emAdded) [
e o e ] e
T Straam)
e e e e L T
T {a) I |
T Ariivane | Activabes coresy | Fesd events |
Aodltem . apgragate avenl lerplatses (L [OrderCraated + |
Cammand P i Ihamrealed [ {Oirder
1 =
i e - - o _ ] em
: e — = = = ———— = Straam}
: Achrials carmect Y T ——
evand lermpiale iamAnded| []
] i L) froaee
1 I Hern
! | — — Stream}
:..._ s T
1 |

del (Single

| aCreate H
aAddltem1 aAddltemN
/ Order 7 |_-Ik-1* 7 I

/ elLoad

// eCH1 [ eCH2 /

tCommandHandler

I aGetltemN

s

I aWriteEventN I

I aGetltem

I aWriteEvent1 I

aWrite
Order

Cfeate
rder

I /aWrite Eventl I

/ /\/ahdateltem1

I /aWriteEventN I
/ /\/alidateltemN
t@rd

(32767}

{1 /eDisko /eDisk'I /eDisk2 /eDiskS /eDisk4/
tDisk




System Execution
Aggreegate)

Command Crar meam Evenl Ewarg
Harsdlar Sonregans B () e Hardar Siore D82
i
M - = I I I I
CrastaCvaar Sy preqata I— AC VDR COITeCy Iw'rrhzn'\.-lzﬂr |
Commarsd avenl RmEeNe CinderCraabed] |
(Ordes
Cemmansd o | | Sonsan}
Succeaafiul P e e A |_ o
| — = = = - —
Ackd e }— Aectivete I I I
m apgregate
Command . Mt M | |
j Emmial eesnt | |
_:::linammr-u;u |Read evams
= Emllal g 1101 )
Oirdes
______ Seream}
fe - = =] | - ——————
WTRe Evenl
Hesnyaiicabsd) Cireler
oqhiris 2 osoame e 1 [ () S —— m}
Intermal swant
HemYalidated | :::::::_I‘I |
- - = = = o
Command [] Iz
Sugcessiul | s o= TEEm
e — - R - —
] T | |
: Sctivaia : I I
Ackdibam
Caommand - M ] | |
rbmmal encerd | Resd ewerts |
il | rorderCreated b
Iemuidded) (Cirdor
______ Stream}
fe - = | | —————— —
WTmE enverl
Nesnvaidated) | Lo
e T i ___ __le—m—————— =T
Inlermal seant
Hemialidaled |- Werhn drurmet |
- — = = = -
Command
Succassiul |
- — — — = == -

Model (Multiple

ke

Creat

| acreate |--| aAdditem1 | —sf aAdditemN | / iy
/ [  eload
/

tWorklogdGenerator

¥
[ ecHo ][]

{10°K}

{10} aRead
Events1

aRead
Eventsh

/

Yy _/

aWWrite
Event

TWVritel
ventN

Validate,

It

1

Validate

ItefnN

/ tOrdgrAggyegate

aWwrite
Iltemn

{32767}

(11 fleDisko /(aDisIﬂ /eDiskz feDiskZ} /eDiskd /eDisk5/eDisk5

tDisk y




Measuring Service Demands

» Service demand is the time that a specific request class
spends at the resource that is servicing it

» Queuing theory specifies rules to calculate it
» Little’s Law
» Utilization Law (specific case of Little’s Law)
» Forced Flow Law



Utilization Law

» Utilization law:
Dc,i = Uc,i / Xc

Uc;— utilization at the station/s at a resource

X.— Throughput of whole system



Forced Flow Law

» Forced Flow Law
Vc,i - ><c,i/Xc

V¢,;— no. of visits at station |
X — Throughput at station |

Dei=Ve, ™ S

C,=

Sc;—service time per visit at station |



Measurement Tools

File Action View Window Help

=op M e H

() performance | S - | e S 0 E W
=~ g Monitaring Tools T —
B Perfarmance Moni r
100 Add Counters b'd
Available counters Added counters
80
Select counters from computer: |
Counter Parent Inst.. Computer
<Local computer > Browse...
80
Processor e
% C1 Time
70 o C2 Tme
% (3 Tame:
%% DPC Time
60
%o Interrupt Time
% Privileged Time
50 %% Processor Time
95 | leay Time X
%0 Insances of selected cbject:
ll _Total
<All instances >
o
30 1
A 2
\ 3
- |
20 '“‘-\ J,*“-'
\ \ [N
/ P
o
10
Add ==
0 X x | [ Show description T i X ¥ X . y
T:18:50 0:18:55 0:19:00 (1 ] ! Cancel g.59 C:20:04 0:20:09 20014 0:20:19 0:20:24  0:20:28
Last | 18,790 Average | 21,819 Minimum | 10,957 Maximum 41,418 Duration 1:40
Show Color Scale Counter Instance Parent Obyject Computer

S 18 9Processor Time _Toral e

- WBETADSS&41




Performance Monitor

» Counters that can be used:

>
>
>

v

% CPU idle
% disk time
Disk tps

% CPU SQL Server instance
Transactions/sec
Write transactions/sec

Overall throughput
Request processing time




Applying Queuing Theory Laws

» Calculate service demand for CPU resource
CPU Utilization / Overall throughput

» Service demand for disk resource
Disk Utilization / Overall throughput
Or

Disk tps / Overall throughput * service time
/ request

a,-e:,.r aGetlte
aWrite aWri
rder /
I /erteEvenH I
/  Jvalidateltem1

gte

///
/
tPrdeylte

JvalidateltemN

e s a
{1}//eDiskD /eDism /eDiskz /eDiskB /eDisk4/

tDisk

/

{32767}




Applying Queuing Theory Laws

» Service demand for CPU resource only DB
CPU Utilization of DB / Overall throughput <

Ord

gte

» Application Service Demand = total
execution time - DB service demand

. |%e“e_, aGetlte
BT | awriteEvent1 | it \
er / ‘ / {
I / WriteEvent1 I / WriteEventN I
/ _Jvalidateltem1 f| / /\/Idt ltemN
tPrde
e ‘

» Remaining from the total execution time is .
delay o /e:DiskD /eDisk1 feDisk2 [eDisk3 [eDiska

tDisk




Measurement vs. Prediction

Throughput Throughput

=
=

User Sessions/sec
!: (=]
S £n

ser Sessionssec

u 1 1 ) 1 1 s s— — D 1 1 1 1 1 1 1 1

1] 50 100 150 200 250 300 350 400 450 500 o 50 100 150 200 250 200 350 400
Mum. of Addltem/CreateOrder Requests Num. of Addltem/CreateCrder Requests

450




Measurement vs. Prediction

Processing Time

0.5 T

Processing Time
T T T

100 150 200 250 300 350 400 450 500
Num. of Addltem/CreateOrder Requests

140

120

100

2]
=]

Avg. Processing Time
[a1]
=2

.
=]

20

Avyg. Processing Time

100 150 200 250 300 350 400 450 500
Num. of Addlitem/CreateCrder Requests




Conclusion and Future Work

» Event Sourcing systems can be modeled by spreading out the
resource demand of the request with largest number of events
evenly across entire life cycle of aggregate

» The two possible architectures can be simulated by separating out
tasks such as aggregate and event store so that separate queues
handle the requests

» Future work envisioned is using the modeling technique described
here and applying it on larger systems



Thanke for |l ictenind



	Aggregate Architecture Simulation in Event-Sourcing Applications using Layered Queuing Networks
	Introduction
	Research Method
	Event Sourcing (and possible architectures) 
	Layered Queuing Networks
	Layered Queuing Networks
	Modeling Components
	System Execution Model (Single Aggreegate)
	System Execution Model (Multiple Aggreegate)
	Measuring Service Demands
	Utilization Law
	Forced Flow Law
	Measurement Tools
	Performance Monitor
	Applying Queuing Theory Laws
	Applying Queuing Theory Laws
	Measurement vs. Prediction
	Measurement vs. Prediction
	Conclusion and Future Work
	Slide Number 20

