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Training of Deep Neural Networks
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Asynchronous SGD with Parameter Server

Parameter Server

Worker

Worker

Worker
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Worker Nodes:
e Receive weights (downlink)

e Process batch of examples (compute)
e Send update (uplink)

Parameter Server: apply updates to weights (update)
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Overlap of Computation and Communication
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[Lin et al.] AModel-Based Approach to Streamlining Distributed Training for Asynchronous SGD. MASCOTS"18
[Zheng et al.] Cynthia: Cost-Efficient Cloud Resource Provisioning for Predictable Distributed DNN Training. ICPP19
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Simulation Approach to Throughput Prediction
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Profiling Challenges in TensorFlow

Transmission
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Problems of recorded durations in profiling traces
e Communication overhead included at the end
e Tensortransmission can be stopped and resumed
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Estimation of Communication Overhead
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Multiplexing Model of Downlink and Uplink
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Networking Optimizations

Multiplexing of multiple streams
can increase the duration of a

communication operation
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Simulation with Multiple Workers

Given a system configuration, including:

Network bandwidth B

Number of worker nodes W

Number of parameter servers M

Parameters «, f of communication overhead model

We simulate a sequence of SGD steps with W workers by
sampling steps from the profiling trace.

Each worker replays the sampled step (a graph of
communication and computation operations) but ...

e Tensortransmissions are scheduled using our multiplexing
model
e When multiple workers are in the downlink or uplink phase,
bandwidth is shared equally
e Parsing overhead added after the reception of a tensor
Li, Yan, Paolieri, Golubchik Throughput Prediction of Asynchronous SGD in TensorFlow

Worker

Worker,

Worker;

Worker,

Worker,

Trace

ﬂ Sample

@ Modify

Step 1 > Step 2 >

Synthetic trace

QED Research Group | ged.usc.edu 10



U7 webservices

Experimental Setup (i' <51 amazon

Validation Platforms
e Private cluster of nodes with 4-core CPU, 16 GB RAM, 1 Gbps Ethernet
e AWS c4.8xlarge instances: 36-core CPU, 60 GB RAM, 10 Gbps Ethernet
e AWS p3.2xlarge instances: 8-core CPU, NVIDIA V100 GPU, 10 Gbps Ethernet

Platform Profiling
Estimate the parameters «, f of the communication overhead model

Job Profiling
For each job, run 100 steps with a single worker node to obtain profiling trace

Prediction
Run trace simulator with 2,...W workers for 1000 steps to evaluate the mean
throughput along the trace.

Validation
Run clusters with 2,...W workers, skip 50 steps, compute throughput on next 50
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Private CPU Cluster
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Batch Sizes DNN Models
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Private CPU Cluster: Networking Optimizations =g

AlexNet, batch size = 4
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Cloud Cluster: CPU-only
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amazon

Cloud Cluster: GPU-enabled, two PS
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Cost and Time Savings
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Prediction is faster and less expensive (simulation of the computation, on CPU nodes instead of p3.2x1large)
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Conclusions

e Approach to the prediction of training throughput
of asynchronous SGD in TensorFlow

o Tracing information from minimal
single-worker profiling

o Discrete-event simulation to generate
synthetic traces with multiple worker nodes

e Faster and less expensive than direct
measurements with multiple workers

e (Good accuracy across DNN models, batch sizes,
and platforms, networking optimizations

e Future work: more fine-grained analytical models
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