Throughput Prediction of Asynchronous SGD in TensorFlow

Zhuojin Li

Wumo Yan

Marco Paolieri

Leana Golubchik

ICPE, April 23, 2020 icpe2020.spec.org

Training of Deep Neural Networks

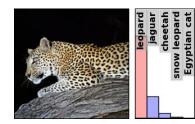
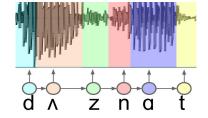
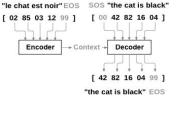


Image Classification Convolutional NN [Krizhevsky et al., 2012]



Speech Recognition Recurrent NN + HMM [Hinton et al., 2012]



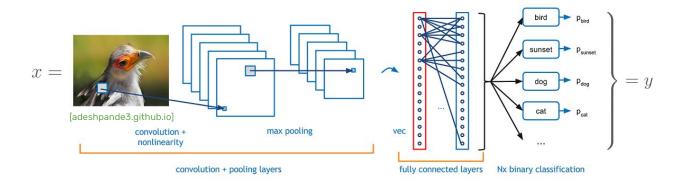
Machine Translation RNN Encoder-Decoder [Sutskever et al., 2014]

Image Classification

Machine learning models with millions of adjustable parameters (**weights**)

Training with millions of **labeled examples**

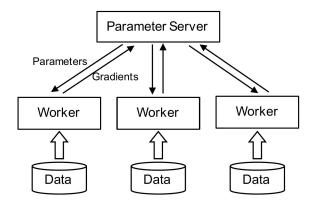
Scaling up with **GPUs**



Li, Yan, Paolieri, Golubchik

Throughput Prediction of Asynchronous SGD in TensorFlow

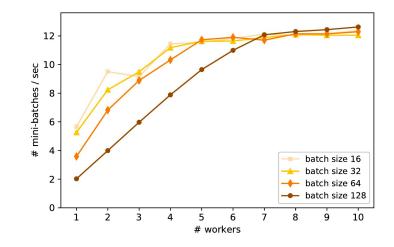
Asynchronous SGD with Parameter Server



Worker Nodes:

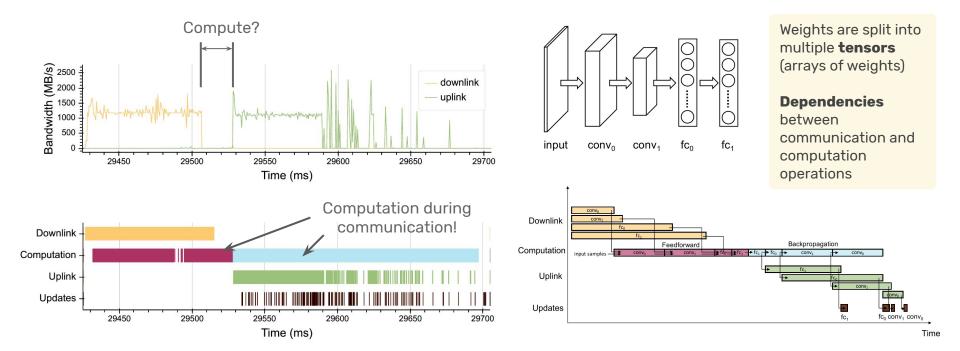
- Receive weights (*downlink*)
- Process batch of examples (compute)
- Send update (uplink)

Parameter Server: apply updates to weights (update)



Training throughput (examples/s) of Inception-v3 on AWS p3.2xlarge instances (NVIDIA V100 GPU)

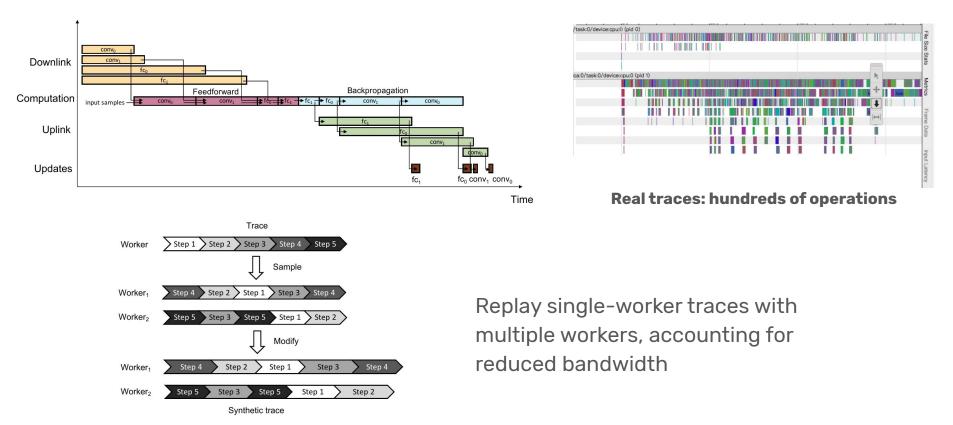
Overlap of Computation and Communication



[Lin et al.] A Model-Based Approach to Streamlining Distributed Training for Asynchronous SGD. MASCOTS'18 [Zheng et al.] Cynthia: Cost-Efficient Cloud Resource Provisioning for Predictable Distributed DNN Training. ICPP'19

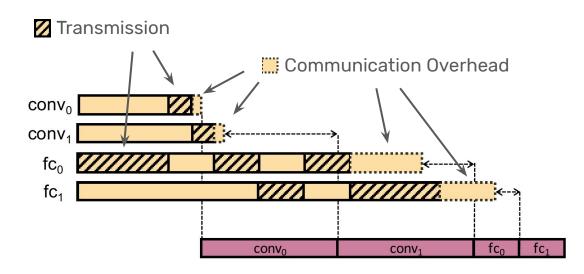
Li, Yan, Paolieri, Golubchik **Throughput Prediction of Asynchronous SGD in TensorFlow** QED Research Group qed.usc.edu

Simulation Approach to Throughput Prediction



Li, Yan, Paolieri, Golubchik

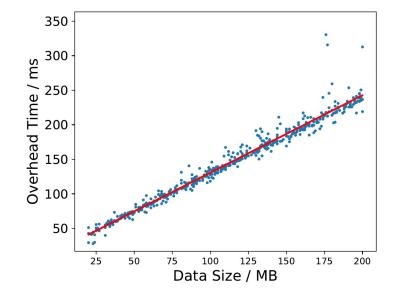
Profiling Challenges in TensorFlow



Problems of recorded durations in profiling traces

- Communication overhead included at the end
- Tensor transmission can be stopped and resumed

Estimation of Communication Overhead



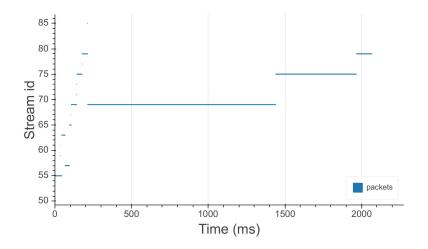
Linear Model

transmission overhead = $\alpha \times \text{size} + \beta$

Parameters α , β estimated once for each platform (private cluster, cloud CPU cluster, cloud GPU cluster).

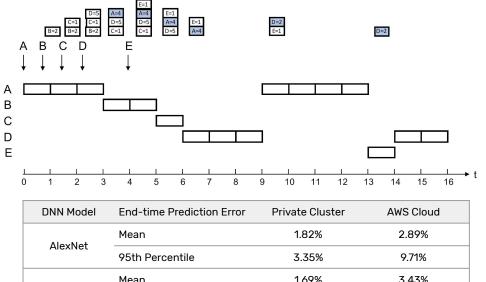
Overhead due to tensor deserialization and copies between memory buffers.

Multiplexing Model of Downlink and Uplink



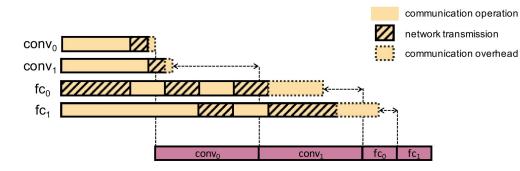
Each stream is transmitted up to the size of the control window.

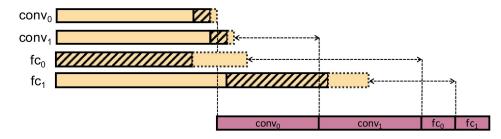
Next, pending streams are transmitted until completion.



AlexNet	Mean	1.82%	2.89%
	95th Percentile	3.35%	9.71%
GoogLeNet	Mean	1.69%	3.43%
	95th Percentile	3.74%	9.14%
ResNet-50	Mean	1.26%	4.36%
	95th Percentile	2.32%	9.70%
Inception-V3	Mean	1.02%	9.23%
	95th Percentile	3.92%	20.98%

Networking Optimizations



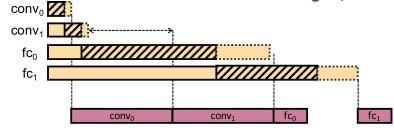


Flow-control Disabled

Multiplexing of multiple streams can increase the duration of a training step (if required tensors are delayed)

Flow control can be disabled in gRPC and transmissions ordered

[Hashemi et al.] **TicTac: Accelerating distributed deep learning with communication scheduling.** SysML'19



Flow-control Disabled, TIC ordering

Simulation with Multiple Workers

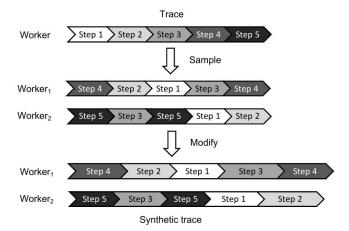
Given a system configuration, including:

- Network bandwidth B
- Number of worker nodes W
- Number of parameter servers M
- Parameters α , β of communication overhead model

We simulate a sequence of SGD steps with *W* workers by sampling steps from the profiling trace.

Each worker replays the sampled step (a graph of communication and computation operations) but ...

- Tensor transmissions are scheduled using our multiplexing model
- When multiple workers are in the downlink or uplink phase, bandwidth is shared equally
- Parsing overhead added after the reception of a tensor



Experimental Setup

11

Validation Platforms

- **Private cluster** of nodes with 4-core CPU, 16 GB RAM, 1 Gbps Ethernet
- AWS c4.8xlarge instances: 36-core CPU, 60 GB RAM, 10 Gbps Ethernet
- AWS p3.2xlarge instances: 8-core CPU, NVIDIA V100 GPU, 10 Gbps Ethernet

Platform Profiling

Estimate the parameters α , β of the communication overhead model

Job Profiling

For each job, run 100 steps with a single worker node to obtain profiling trace

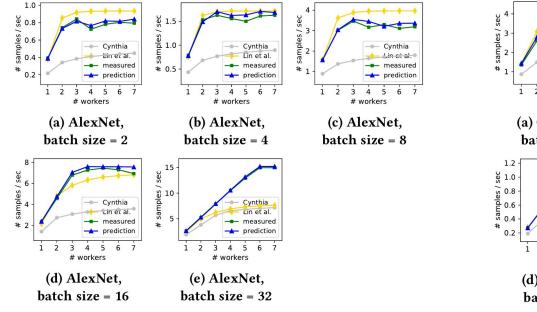
Prediction

Run trace simulator with 2,...,W workers for 1000 steps to evaluate the mean throughput along the trace.

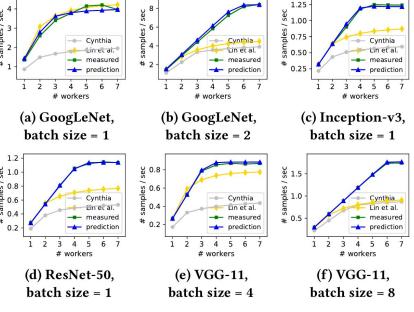
Validation

Run clusters with 2,...,W workers, skip 50 steps, compute throughput on next 50

Private CPU Cluster



Batch Sizes



DNN Models

Li, Yan, Paolieri, Golubchik **Throughput Prediction of Asynchronous SGD in TensorFlow** QED Research Group qed.usc.edu

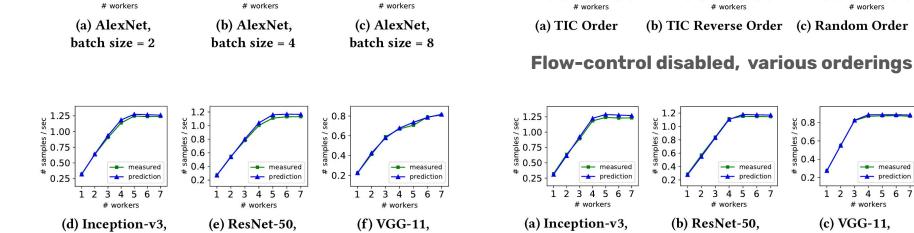
AlexNet, batch size = 4 1.0 2.0 2.0 2.0 2.0 8.0 samples / sec 6.0 4.0 samples / sec 1.5 samples / sec N W # samples / sec 1.5 samples / sec 1.5 y 1.5 samples 1.0

0.5

1 2

batch size = 1

Private CPU Cluster: Networking Optimizations



batch size = 4

measured

prediction

1 2 3 4 5 6 7

Flow-control disabled

measured

prediction

1 2 3 4 5 6 7

1

Flow-control disabled, TIC ordering

batch size = 1

measured

prediction

1 2 3 4 5 6 7

* 0.5

measured

3 4 5 6 7

prediction

0.5

batch size = 1

measured

1 2 3 4 5 6 7

batch size = 1

0.2

prediction

[#] 0.5

measured

measured

prediction

13

2 3 4 5 6 7

workers

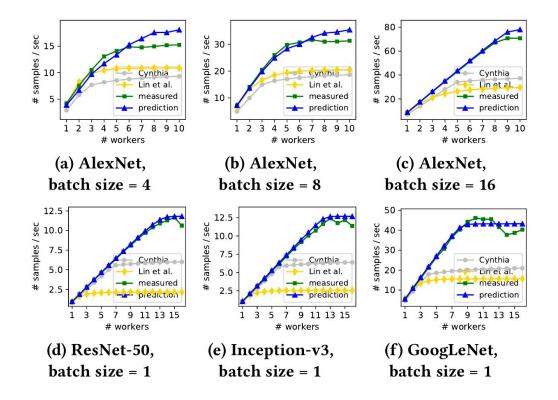
batch size = 4

1234567

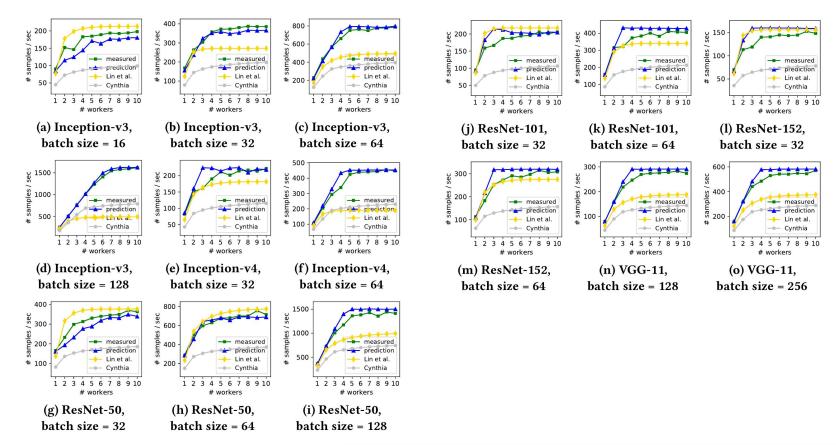
workers

prediction

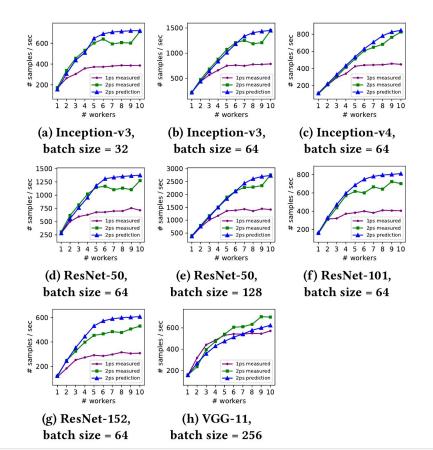
Cloud Cluster: CPU-only

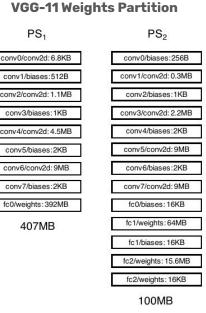


Cloud Cluster: GPU-enabled



Cloud Cluster: GPU-enabled, two PS





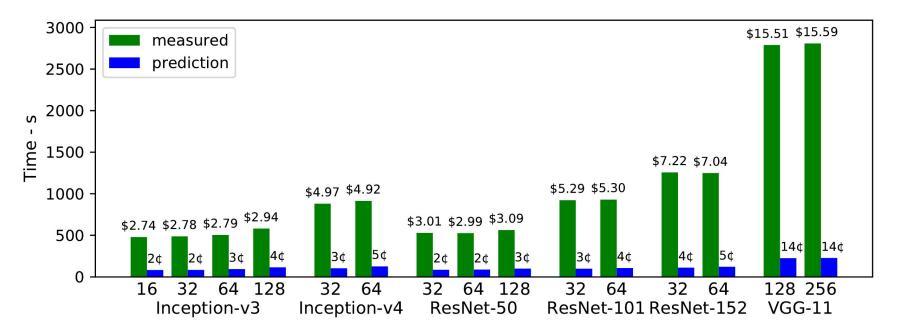
Limited improvement from two parameters servers in VGG-11 (h) due to uneven split of DNN weights

Li, Yan, Paolieri, Golubchik

Throughput Prediction of Asynchronous SGD in TensorFlow

QED Research Group | qed.usc.edu

Cost and Time Savings



Prediction is faster and less expensive (simulation of the computation, on CPU nodes instead of p3.2xlarge)

Conclusions

- Approach to the prediction of training throughput of asynchronous SGD in TensorFlow
 - Tracing information from minimal single-worker profiling
 - Discrete-event simulation to generate synthetic traces with multiple worker nodes
- Faster and less expensive than direct measurements with multiple workers
- Good accuracy across DNN models, batch sizes, and platforms, networking optimizations
- Future work: more fine-grained analytical models

