DLBricks: Composable Benchmark Generation to Reduce Deep Learning Benchmarking Effort on CPUs <u>Cheng Li¹</u>, Abdul Dakkak¹, Jinjun Xiong², Wen-mei Hwu¹ University of Illinois Urbana-Champaign¹, IBM Research² **ICPE2020** ## **Background** - Deep Learning (DL) models are used in many application domains - Benchmarking is a key step to understand their performance - The current benchmarking practice has a few limitations that are exacerbated by the fast-evolving pace of DL models ## **Limitations of Current DL Benchmarking** - Developing, maintaining, and running benchmarks takes a non-trivial amount of effort - Benchmark suites select a small subset (or one) out of tens or even hundreds of candidate models - It is hard for DL benchmark suites to be agile and representative of real-world model usage ## **Limitations of Current DL Benchmarking** - Benchmarking development and characterization can take a long time - Proprietary models are not represented within benchmark suites - Benchmarking proprietary models on a vendor's system is cumbersome - The research community cannot collaborate to optimize these models Slow down the adoption of DL innovations ### **DLBricks** - Reduces the effort to develop, maintain, and run DL benchmarks - Is a composable benchmark generation design - Given a set of DL models, DLBricks parses them into a set of unique layer sequences based on the user-specified benchmark granularity (G) - DLBricks uses two key observations to generate a representative benchmark suite, minimize the time to benchmark, and estimate a model's performance from layer sequences - DL layers are the performance building blocks of the model performance - A DL model is graph where each vertex is a layer (or operator) and an edge represents data transfer - Data-independent layers can be run in parallel Model architectures where the critical path are highlighted ## **Evaluation Setup** We use 50 MXNet models that represent 5 types of DL tasks and run them on 4 systems | Instance | CPUS | Memory (GiB) | \$/hr | |------------|-------------------------|--------------|-------| | c5.xlarge | 4 Intel Platinum 8124M | 8GB | 0.17 | | c5.2xlarge | 8 Intel Platinum 8124M | 16GB | 0.34 | | c4.xlarge | 4 Intel Xeon E5-2666 v3 | 7.5GB | 0.199 | | c4.2xlarge | 8 Intel Xeon E5-2666 v3 | 15GB | 0.398 | **Evaluations are performed on the 4 Amazon** EC2 systems listed. The systems are ones recommended by Amazon for DL inference. | ID | Name | Task | Num
Layers | |----------------|--|---------------|---------------| | 1 | Ademxapp Model A Trained on ImageNet Competition Data | IC | 142 | | 2 | Age Estimation VGG-16 Trained on IMDB-WIKI and Looking at People Data | IC | 40 | | 3 | Age Estimation VGG-16 Trained on IMDB-WIKI Data | IC | 40 | | 4 | CapsNet Trained on MNIST Data | IC | 53 | | 5 | Gender Prediction VGG-16 Trained on IMDB-WIKI Data | IC | 40 | | 6 | 6 Inception V1 Trained on Extended Salient Object Subitizing Data | | 147 | | 7 | | | 147 | | 8 | | | 147 | | 9 | | | 311 | | 10 | | | 153 | | 11 | ResNet-101 Trained on ImageNet Competition Data | IC
IC | 347 | | 12 | ResNet-101 Trained on YFCC100m Geotagged Data | IC | 344 | | 13 | ResNet-152 Trained on ImageNet Competition Data | IC | 517 | | 14 | ResNet-50 Trained on ImageNet Competition Data | IC | 177 | | 15 | Squeeze-and-Excitation Net Trained on ImageNet Competition Data | IC | 874 | | 16 | SqueezeNet V1.1 Trained on ImageNet Competition Data | IC | 69 | | 17 | VGG-16 Trained on ImageNet Competition Data | IC | 40 | | 18 | VGG-19 Trained on ImageNet Competition Data | IC | 46 | | 19 | Wide ResNet-50-2 Trained on ImageNet Competition Data | IC | 176 | | 20 | Wolfram ImageIdentify Net V1 | IC | 232 | | | | IC | | | 21_ | Yahoo Open NSFW Model V1 | - ĪP | - 177 | | 22 | AdaIN-Style Trained on MS-COCO and Painter by Numbers Data | | 109 | | 23 | Colorful Image Colorization Trained on ImageNet Competition Data | IP | 58 | | 24 | ColorNet Image Colorization Trained on ImageNet Competition Data | IP | 62 | | 25 | ColorNet Image Colorization Trained on Places Data | IP | 62 | | 26 | CycleGAN Apple-to-Orange Translation Trained on ImageNet Competition Data | IP | 94 | | 27 | CycleGAN Horse-to-Zebra Translation Trained on ImageNet Competition Data | IP | 94 | | 28 | CycleGAN Monet-to-Photo Translation | \mathbf{IP} | 94 | | 29 | CycleGAN Orange-to-Apple Translation Trained on ImageNet Competition Data | \mathbf{IP} | 94 | | 30 | CycleGAN Photo-to-Cezanne Translation | IΡ | 96 | | 31 | CycleGAN Photo-to-Monet Translation | IP | 94 | | 32 | CycleGAN Photo-to-Van Gogh Translation | IP | 96 | | 33 | CycleGAN Summer-to-Winter Translation | IP | 94 | | 34 | CycleGAN Winter-to-Summer Translation | IP | 94 | | 35 | CycleGAN Zebra-to-Horse Translation Trained on ImageNet Competition Data | IΡ | 94 | | 36 | Pix2pix Photo-to-Street-Map Translation | IΡ | 56 | | 37 | Pix2pix Street-Map-to-Photo Translation | IP | 56 | | 38 | Very Deep Net for Super-Resolution | IP | 40 | | 39 | SSD-VGG-300 Trained on PASCAL VOC Data | ŌD | 145 | | 40 | SSD-VGG-512 Trained on MS-COCO Data | OD | 157 | | 41 | YOLO V2 Trained on MS-COCO Data | OD | 106 | | $\bar{42}^{-}$ | 2D Face Alignment Net Trained on 300W Large Pose Data | RG | 967 | | 43 | 3D Face Alignment Net Trained on 300W Large Pose Data | RG | 967 | | 44 | Single-Image Depth Perception Net Trained on Depth in the Wild Data | RG | 501 | | 45 | Single-Image Depth Perception Net Trained on NYU Depth V2 and Depth in the Wild Data | RG | 501 | | 46 | Single-Image Depth Perception Net Trained on NYU Depth V2 Data | RG | 501 | | 47 | Unguided Volumetric RG Net for 3D Face Reconstruction | RG | 1029 | | 48 | Ademxapp Model A1 Trained on ADE20K Data | - SS | 141 | | | Ademxapp Model A1 Trained on PASCAL VOC2012 and MS-COCO Data | SS | 141 | | 49 | | | | #### Models used for evaluation - sequential total layer latency = sum of all layers' latency - parallel total layer latency = sum of layer latencies along the critical path The sequential and parallel total layer latency normalized to the model's end-to-end latency using batch size 1 on c5.2xlarge Layers (considering their layer type, shape, and parameters, but ignoring the weights) are extensively repeated within and across DL models **ResNet50 model architecture** **ResNet50 modules** The percentage of unique layers The type distribution of the repeated layers ## **DLBricks Design** - DLBricks explores not only layer level model composition but also sequence level composition where a layer sequence is a chain of layers - The *benchmark granularity* (*G*) specifies the maximum numbers of layers within a layer sequence within the generated benchmarks **DLBricks design and workflow** ### **Benchmark Generation Workflow** - The user inputs a set of models along with a target benchmark granularity - The benchmark generator parses the input models into a representative (unique) set of non-overlapping layer sequences and then generates a set of runnable networks - The runnable networks are evaluated on a system of interest to get their performance **DLBricks design and workflow** ### **Benchmark Generation Workflow** #### Algorithm 1 The FindModelSubgraphs algorithm. **Input:** *M* (Model), *G* (Benchmark Granularity) **Output:** Models 1: $begin \leftarrow 0, Models \leftarrow \{\}$ 2: $verts \leftarrow TopologicalOrder(ToGraph(M))$ 3: while $begin \leq Length(vs) do$ $end \leftarrow \mathbf{Min}(begin + G, \mathbf{Length}(vs))$ $sm \leftarrow SplitModel(verts, begin, end)$ $Models \leftarrow Models + sm["models"]$ $begin \leftarrow sm ["end"] + 1$ ``` Algorithm 2 The SplitModel algorithm. Input: verts, begin, end Output: ("models", "end") ▶ Hash table 1: vs \leftarrow verts[begin : end] 2: try m \leftarrow \mathbf{CreateModel}(vs) ▶ Creates a valid model return ("models" \rightarrow \{m\}, "end" \rightarrow end) 5: catch ModelCreateException m \leftarrow \{ \mathbf{CreateModel}(\{verts[begin]\}) \} n \leftarrow \text{SplitModel}(verts, begin + 1, end + 1) 7: return ("models" \rightarrow m + n ["models"], "end" \rightarrow n ["end"] 9: end try ``` 7: 8: end while 9: return Models ### **Performance Construction Workflow** - The performance constructor queries the stored benchmark results for the layer sequences within the model - It then computes the model's estimated performances based on the composition strategy **DLBricks design and workflow** ## **Evaluation** The end-to-end latency of models in log scale across systems ## **Evaluation** The constructed model latency normalized to the model's end-to-end latency. The benchmark granularity varies from 1 to 6. Sequence 1 means each benchmark has one layer (layer granularity). ## **Benchmarking Speedup** - Up to 4.4× benchmarking time speedup for G = 1 on c5.xlarge - For all 50 models, the total number of layers is 10,815, but only 1,529 (i.e. 14%) are unique - Overall, G = 1 is a good choice of benchmark granularity configuration for DLBricks given the current DL software stack on CPUs The geometric mean of the normalized latency (constructed vs end-to-end latency) with varying benchmark granularity from 1 to 10. The speedup of total benchmarking time across systems and benchmark granularities. #### **Discussion** - Generating non-overlapping layer sequences during benchmark generation - Requires a small modification to the algorithms - Adapting to Framework Evolution - Requires adjusting DLBricks to take user-specified parallel execution rules - Exploring DLBricks on Edge and GPU devices - The core design holds for GPU and edge devices. Future work would explore the design on these devices #### Conclusion - DLBricks reduces the effort of developing, maintaining, and running DL benchmarks, and relieves the pressure of selecting representative DL models. - DLBricks allows representing proprietary models without model privacy concerns as the input model's topology does not appear in the output benchmark suite, and "fake" or dummy models can be inserted into the set of input models # Thank you <u>Cheng Li¹</u>, Abdul Dakkak¹, Jinjun Xiong², Wen-mei Hwu¹ University of Illinois Urbana-Champaign¹, IBM Research²