Workload Diffusion Modeling for Distributed Applications in Fog/Edge Computing Environments

The International Conference on Performance Engineering

Thang Le Duc thang@cs.umu.se, thang.leduc@tieto.com

2020 - 04 - 24

Motivation

- Limitation in workload data collection in large-scale distributed applications/systems [1]
- Workload propagation model [1,2]
 - How workload from a node is propagated to its neighbors?
 - To facilitate workload preditions and/or workload generation
 - Auto-scaling and system remediation (in RECAP: <u>https://recap-project.eu/</u>)

Ad hoc network

- Content Delivery Network (CDN)
- Core Broadband Network

Agenda

- Introduction
- Non-Hierarchical Workload Diffusion
- Hierarchical Workload Diffusion
- Experiments
- Discussion
- Conclusions

Introduction Issues and Challenges

- The necessity of understanding the applications and their workload behaviors
 - Large-scale distributed applications in fog/edge computing environments: CDN, telco network services, IoT application, ...
 - Workload and/or application characterization, analysis and modeling
 - Workload propagation models
- The high demand of publicly available datasets
 - Time series datasets: web traffic, system resource utilization, ...
 - Synthetic workload generation for diverse applications

5 © Tieto Corporation

Introduction Problem and Solution

- Problem (see the figure)
 - Given workload measurements at a limited subset of nodes, generate/extrapolate supplementary workloads for the entire application/network
- Solution
 - Application models and/or workload propagation models
 - Workload diffusion algorithms
 - Non-hierarchical Workload Diffusion
 - Applicable to non-hierarchical systems: unstructured peer-to-peer overlay or ad-hoc networks
 - Hierarchical Workload Diffusion
 - Applicable to hierarchical systems: CDNs or core broadband networks
 - Final target: a framework with the models and algorithms integrated

Non-Hierarchical Workload Diffusion

- Population-based Diffusion
 - Based on the population associated to nodes (1)
 - A node with larger population receives higher load from a source
- Location-based Diffusion
 - Based on the geographical location of nodes or distance between nodes (2)
 - A node closer to the source receives higher load
 - Executed in iterations as shown in the flow chart
 - Convergence: predefined threshold or no significant changes
- Bandwidth-based Diffusion
 - Based on the bandwidth capacity of links (3)
 - · Workload distributed on a link is proportional to the link's capacity
 - Executed in iterations as shown in the flow chart

Hierarchical Workload Diffusion Hierarchy-based Diffusion

End

Hierarchical Workload Diffusion

	Algorithm	Assumptions	Key Inputs	Description			
Summar	Population-based	 Non-hierarchical network/application topologies Homogeneous user behavior 	User distribution in the network	Iterative refinement algorithms (similar to heat			
	Location-based		Geographical node locations	 diffusion and spring relaxation equations) Repeatedly solve state equations to distribute 			
	Bandwidth-based		 Bandwidth capacity of links 	 workload to neighbours until the overall load distribution approaches equilibrium Algorithms are highly parallelizable 			
	Hierarchy-based	 Hierarchical network/ application topologies Full mesh network of the inner-core nodes Multiple shortest path routing Homogeneous user behavior 	 Network hierarchy Bandwidth capacity of links User distribution in the network 	 User aggregation: identifies the aggregated number of users at every node/location based on bandwidth capacity of neighbouring links Backward workload extrapolation (*): collects workload measurements from every node to the innercode nodes Inner-core workload extrapolation: extrapolates workload at every inner-core node (if needed) Workload propagation (**): distributes the workload from inner-code nodes to every node in the network 			
	Network-Routing- based		 All required by Hierarchy-based diffusion algorithm A set of service (inner-core) nodes 	 Routing path discovery: identifies (shortest) routing paths from client-clusters to the service nodes User aggregation based on routing paths Backward workload extrapolation (same as (*)) Workload propagation (same as (**)) 			

Experiments Settings

- Network model
 - A small scale of the BT core network
 - 3 inner-core, 6 outer-core, 9 metro, and 27 T1 nodes
 - Distribution of nodes and assumptions of links' bandwidth capacity
 - Based on census population data of the city
- Workload data [4]
 - From the production CDN system of BT
 - 3 datasets collected at 3 inner-core nodes

Network model of the city of Umeå, Sweden

Experiments Scenario 1 (1/2)

- Description
 - Measurements: at central nodes (I1, I2, I3)
 - Demonstration of basic features of the algorithms
 - Propagation of workload towards the edge of the network
 - Data is normalized; y-axis is named 'Proportional Traffic'
- Data traces

Original workload measurements associated to nodes I1, I2, and I3

Experiments Scenario 1 (2/2)

12 © Tieto Corporation

Experiments Scenario 2

- Measurements: at random nodes (M2, M9, T62)
- Comprehensive verification

Result Validation

	M2	M2HB	M2BW	M9	М9НВ	M9BW	T62	T62HB	T62BW
Entropy [5]	5.6252	6.7778	5.6368	5.7002	7.0710	5.6491	5.7588	6.8891	5.6464
Approximate Entropy [6]	0.6017	0.6344	0.6236	0.5972	0.6245	0.6202	0.6179	0.6257	0.6236

Entropy and approximate entropy measurements for the rediffused data of nodes M2, M9, and T62

(BW: bandwidth-based diffusion; HB: hierarchy-based diffusion)

The distribution of the rediffused values and the original measurements for node M2

Discussion

- Main objectives
 - Workload generation to support large-scale distributed application profiling
 - Workload propagation modeling and/or application modeling
- Extension
 - Mitigate data privacy concerns in dissemination of data traces collected from sensitive data applications
 - E.g.: the scenario of BT CDN system (see the figure)
 - Core nodes I1, I2, I3: real measurements
 - Other nodes: generated data

Conclusions

- A formulation of the problem of workload generation for large-scale distributed applications/systems
- Five algorithms
 - Addressing the problem
 - Facilitating workload generation using workload propagation models
- A discussion on further application of the proposed diffusion algorithms
- Future work
 - To develop application models for telco service function chains and IoT applications
 - To develop or adapt the algorithms to the applications models: application profiling and data privacy
 - To standadize and abstract the models and algorithms to finalize a workload propagation modeling and workload generation framework

References

- T. Le Duc, R. Garcia Leiva, P. Casari, and P-O. Östberg. 2019. Machine Learning Methods for Reliable Resource Provisioning in Edge-Cloud Computing: A Survey. ACM Computing Surveys 52, 5, Article 94 (August 2019), 39 pages.
- [2] P-O. Östberg et al. 2017. Reliable Capacity Provisioning for Distributed Cloud/Edge/Fog Computing Applications. In Proc. European Conference on Networks and Communications (EuCNC). Oulu, Finland, 1–6.
- [3] Kitz. 2009. BT 21CN Network Topology & Technology. https://kitz.co.uk/adsl/21cn_network.htm. Accessed: February 19, 2020.
- [4] M. Leznik et al. 2019. RECAP Artificial Data Traces. https://doi.org/10.5281/zenodo.3458559
- [5] T. J. Ulrych and R. W. Clayton. 1976. Time Series Modelling and Maximum Entropy. Physics of the Earth and Planetary Interiors 12, 2 (1976), 188 200.
- [6] S. Pincus. 1995. Approximate Entropy (ApEn) as a Complexity Measure. Chaos: An Interdisciplinary Journal of Nonlinear Science 5, 1 (1995), 110–117.

Thank you

tieto

Thang Le Duc, PhD

Postdoc Researcher Department of Computing Science, Umeå University Senior Researcher Tieto Product Development Services, TietoEVRY Sweden AB thang@cs.umu.se, thang.leduc@tieto.com