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Motivation

• Limitation in workload data collection
in large-scale distributed applications/systems [1]

• Workload propagation model [1,2]
• How workload from a node

is propagated to its neighbors?

• To facilitate workload preditions
and/or workload generation

• Auto-scaling and system remediation
(in RECAP: https://recap-project.eu/)

• Peer-to-peer overlay network

• Ad hoc network

• Content Delivery Network (CDN)

• Core Broadband Network

https://recap-project.eu/
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Agenda

• Introduction

• Non-Hierarchical Workload Diffusion

• Hierarchical Workload Diffusion

• Experiments

• Discussion

• Conclusions
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Introduction
Issues and Challenges

• The necessity of understanding the applications and their workload
behaviors

• Large-scale distributed applications in fog/edge computing environments: CDN, 
telco network services, IoT application, …

• Workload and/or application characterization, analysis and modeling

• Workload propagation models

• The high demand of publicly available datasets
• Time series datasets: web traffic, system resource utilization, …

• Synthetic workload generation for diverse applications
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Introduction
Problem and Solution

• Problem (see the figure)

• Given workload measurements at a limited subset of nodes,
generate/extrapolate supplementary workloads 
for the entire application/network

• Solution

• Application models and/or workload propagation models

• Workload diffusion algorithms

• Non-hierarchical Workload Diffusion

• Applicable to non-hierarchical systems: unstructured peer-to-peer overlay or ad-hoc networks

• Hierarchical Workload Diffusion

• Applicable to hierarchical systems: CDNs or core broadband networks

• Final target: a framework with the models and algorithms integrated
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Non-Hierarchical Workload Diffusion

• Population-based Diffusion

• Based on the population associated to nodes (1)

• A node with larger population receives
higher load from a source

• Location-based Diffusion

• Based on the geographical location of nodes
or distance between nodes (2)

• A node closer to the source receives higher load

• Executed in iterations as shown in the flow chart

• Convergence: predefined threshold or no significant changes

• Bandwidth-based Diffusion

• Based on the bandwidth capacity of links (3)

• Workload distributed on a link is proportional to the link’s capacity

• Executed in iterations as shown in the flow chart
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Hierarchical Workload Diffusion
Hierarchy-based Diffusion
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(1) User Aggregation

(4) Workload Propagation

(3) Inner Core

Workload

Extrapolation

(2) Backward

Workload

Extrapolation

• The adopted hierarchical network model is a representative of the BT 21CN production network [3] 

but at a smaller scale (https://kitz.co.uk/adsl/21cn_network.htm)
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Hierarchical Workload Diffusion
Network-Routing-based Diffusion
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(1) Routing Path Discovery & (2) User Aggregation

(4) Workload Propagation

(3) Backward

Workload

Extrapolation
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Algorithm Assumptions Key Inputs Description

Population-based • Non-hierarchical 

network/application 

topologies

• Homogeneous user 

behavior

• User distribution in the network • Iterative refinement algorithms (similar to heat 

diffusion and spring relaxation equations)

• Repeatedly solve state equations to distribute 

workload to neighbours until the overall load 

distribution approaches equilibrium

• Algorithms are highly parallelizable

Location-based • Geographical node locations

Bandwidth-based

• Bandwidth capacity of links

Hierarchy-based

• Hierarchical network/ 

application topologies

• Full mesh network of 

the inner-core nodes

• Multiple shortest path 

routing

• Homogeneous user 

behavior

• Network hierarchy

• Bandwidth capacity of links

• User distribution in the network

• User aggregation: identifies the aggregated number of 

users at every node/location based on bandwidth 

capacity of neighbouring links

• Backward workload extrapolation (*): collects 

workload measurements from every node to the inner-

code nodes

• Inner-core workload extrapolation: extrapolates 

workload at every inner-core node (if needed)

• Workload propagation (**): distributes the workload 

from inner-code nodes to every node in the network

Network-Routing-

based

• All required by Hierarchy-based

diffusion algorithm

• A set of service (inner-core) 

nodes

• Routing path discovery: identifies (shortest) routing 

paths from client-clusters to the service nodes

• User aggregation based on routing paths

• Backward workload extrapolation (same as (*))

• Workload propagation (same as (**))
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Experiments
Settings

• Network model

• A small scale of the BT core network

• 3 inner-core, 6 outer-core,
9 metro, and 27 T1 nodes

• Distribution of nodes and
assumptions of links’ bandwidth capacity

• Based on census population
data of the city

• Workload data [4]

• From the production CDN system of BT

• 3 datasets collected at 3 inner-core nodes
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Network model of the city of Umeå, Sweden
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Experiments
Scenario 1 (1/2)

• Description
• Measurements: at central nodes (I1, I2, I3)

• Demonstration of basic features of the algorithms

• Propagation of workload towards the edge of the network

• Data is normalized; y-axis is named ’Proportional Traffic’

• Data traces
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Original workload measurements associated to nodes I1, I2, and I3
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Experiments
Scenario 1 (2/2) 
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Location-based Diffusion Bandwidth-based Diffusion

Hierarchy-based vs. Network-routing-based

Population-based Diffusion
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Experiments
Scenario 2
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Hierarchy-based Diffusion

Bandwidth-based Diffusion
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• Measurements: at random nodes (M2, M9, T62)

• Comprehensive verification
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Result Validation
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The distribution of the rediffused values and the original measurements for node M2

(Correlation coefficient) (Correlation coefficient)

M2 M2HB M2BW M9 M9HB M9BW T62 T62HB T62BW

Entropy [5] 5.6252 6.7778 5.6368 5.7002 7.0710 5.6491 5.7588 6.8891 5.6464

Approximate Entropy [6] 0.6017 0.6344 0.6236 0.5972 0.6245 0.6202 0.6179 0.6257 0.6236

Entropy and approximate entropy measurements for the rediffused data of nodes M2, M9, and T62

(BW: bandwidth-based diffusion; HB: hierarchy-based diffusion)
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• Main objectives
• Workload generation to support large-scale distributed application profiling

• Workload propagation modeling and/or application modeling

• Extension
• Mitigate data privacy concerns in dissemination of data traces

collected from sensitive data applications

• E.g.: the scenario of BT CDN system (see the figure)

• Core nodes I1, I2, I3: real measurements

• Other nodes: generated data

Discussion
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Conclusions

• A formulation of the problem of workload generation for large-scale
distributed applications/systems

• Five algorithms
• Addressing the problem

• Facilitating workload generation using workload propagation models

• A discussion on further application of the proposed diffusion algorithms

• Future work
• To develop application models for telco service function chains and IoT applications

• To develop or adapt the algorithms to the applications models: application profiling and 
data privacy

• To standadize and abstract the models and algorithms to finalize a workload propagation
modeling and workload generation framework
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