
1 / 28

A Framework for Satisfying the Performance Requirements of
Containerized Software Systems Through Multi-Versioning

Sara Gholami Alireza Goli Cor-Paul Bezemer Hamzeh Khazaei

An example problem: The Slashdot Effect

2 / 28

One solution to the Slashdot Effect is to increase the resources

3 / 28

Another solution is to manage the available resources better

4 / 28

High-level architecture of a service in Docker, where requests are load
balanced in a Round Robin manner

5 / 28

We present Docker with multi-versioning: DockerMV

6 / 28

DockerMV takes away the service management nightmare

7 / 28

Load
Balancer

Load
Balancer

Load
Balancer

Load
Balancer

8 / 28

How do we evaluate DockerMV?

The TeaStore application, an online webstore application

9 / 28

The Znn application, a three-tier online news application

10 / 28

We conducted three experiments for the TeaStore application

11 / 28

Ideal case experiment
Recommender with multiple training

(Only heavy weight)

Adaptive experiment
Adaptive load distribution

(Mix of heavy and light weight)

Worst case experiment
Recommender with single training

(Only light weight)

We conducted three experiments for the Znn application

12 / 28

Ideal case experiment
Multimedia responses only

(Only heavy weight)

Adaptive experiment
Adaptive load distribution

(Mix of heavy and light weight)

Worst case experiment
Text responses only
(Only light weight)

Workload applied to the TeaStore application

13 / 28

100 users sending HTTP requests for 1,000 seconds
(Almost 97 requests per second)

We defined the SLA response time threshold to be 450 ms

In the TeaStore application’s ideal case experiment, the response time
exceeds the threshold under the load

14 / 28

Ideal case exp.

In the TeaStore application's worst case experiment, the response time
falls below the threshold under the load

15 / 28

Worst case exp.

In the TeaStore application’s adaptive experiment, the response time is
maintained close to the threshold

16 / 28

Adaptive exp.

The ratio of requests responded by the HeavyWeight version of the
Recommender service in the TeaStore's adaptive experiment

17 / 28

Workload applied to the Znn application

18 / 28

In the Znn application’s ideal case experiment, the response time
exceeds the threshold under the load

19 / 28

Ideal case exp.

In the Znn application's worst case experiment, the response time falls
below the threshold under the load

20 / 28

Worst case exp.

In the Znn application’s adaptive experiment, the response time is
maintained around the threshold

21 / 28

Adaptive exp.

DockerMV source code is publicly available on GitHub

22 / 28

https://github.com/pacslab/DockerMV

We present Docker with multi-versioning: DockerMV

23 / 28

22 / 28

In the TeaStore application’s adaptive experiment, the response time is
close to the threshold

25 / 28

Adaptive exp.

26 / 28

In the Znn application’s adaptive experiment, the response time is
maintained around the threshold

27 / 28

Adaptive exp.

28 / 28

Sara Gholami
sgholami @ualberta.ca

Format of rules for the load balancer

29 / 28

$METRIC $OPERATOR $THRESHOLD,
(version $VERSION_NAME perc =$PERCENTAGE;)+

For example:

RT > 0.4,
version recommender:HeavyWeight perc=40;
version recommender:LightWeight perc=60;

How to run DockerMV

30 / 28

docker service create [$OPTIONS]
$IMAGE1 $REPLICATION1

…
$IMAGEn $REPLICATIONn

For example,

docker service create
e REGISTRY_HOST=host_ip e REGISTRY_PORT=1000
10.2.5.26 Network recommender 8080 rules.txt
sgholami/teastore-recommender:HeavyWeight 1
sgholami/teastore-recommender:LightWeight 1

