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Motivation

• Performance means revenue
• «We are not the fastest retail site on the internet today» [Walmart, 2012]
• «[…] page speed will be a ranking factor for mobile searches.» [Google]

è It’s worth investing in system performance. How?
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Motivation

• Question: where to invest?
• Performance estimation:
• Profiling: easy, does not predict
• Modeling: needs expert and 

continuous update, predictions
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Motivation: our vision

• If we had a model, we could try all possible choices, forecast and 
choose the best option.

è Automate model generation!!!
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Our Main Contribution

• Direct association between:
• Model: Fluid Approximation of Closed Queuing Networks
• Automation: Recurrent Neural Networks

• Automatic generation of models from data
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Model: Queuing Networks

• Model that represent contention
of resources by clients
• Clients ask for work to station 

(resources)
• Stations have a maximum 

concurrency level, and a speed
• Clients once served ask another

resource according to routing 
matrix
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Model of a system 

• Resource è hardware
• Routing matrix è program code
• Clients è program instances
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How our procedure works
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Profiling Learning Model PredictionChanges
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Recurrent Neural Networks

• Recurrent neural networks (RNN) work with sequences (e.g. time 
series)
• We will encode the model as a RNN with a custom structure.
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Recurrent Neural Networks

• The system parameters are directly encoded in the RNN cell
èLearned model explains the system! (Explainable Neural Network)
• We can modify the system afterwards to do prediction!
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Synthetic case studies: setting

• 10 random systems: five with M=5 stations, five with M=10 stations
• Concurrency levels between 15 and 30
• Service rate between 4 and 30 clients/time unit
• 100 traces, each one being an average of 500 executions, with           

[0, 40 M] clients
• Learning time: 74 min for M = 5 and 86 min for M = 10
• Error function: % clients wrongly placed
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Synthetic case studies: prediction with 
different #clients
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among network size and 
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è Good predictive 
power among different 
conditions
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Synthetic case studies: prediction with 
different concurrency levels
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Increased concurrency as
to resolve the bottleneck
è Learning outcome 
resilient to changes in 
part of the network
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Real case study: setting

• node.js web application, replicated 
3 times
• Python script simulates N clients
• Learning time: 27 min for N=26
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Real case study: prediction with different
#clients
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M3 is the bottleneck, and this affects the UX. We need to solve it…
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Real case study: prediction with different
structure
…by increasing the concurrency level of M3

err: 5.98%
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…by changing the LB scheduling policy
err: 6.10%
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Bottleneck solved. Nice results also on a real HW+SW system.



Limits

• Many traces required to learn the system.
• System must be observed at high frequency.
• Layered systems currently not supported. 
• Resilient to limited changes, not extensive ones.
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Related work

• Performance models from code (e.g. PerfPlotter, not predictive)
• Modelling black-box systems (e.g. Siegmund et al., tree-structured 

models)
• Program-driven generation of models (e.g. Hrischuk et al., distributed 

components that communicate via RPC)
• Estimation of service demands in QN through several techniques (we 

estimate service demands and routing matrix)
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Conclusions

• We provided a method to estimate QN parameters using a RNN that
converges on feasible parameters.
• With the estimated parameters, it is possible to estimate the 

evolution of the system using a population different from the one
used during learning or when doing structural modifications.
• We want to apply the technique to more complex systems (e.g

LQN,multiclass), use other learning methodologies (e.g. neural ODEs) 
and improve the accuracy of the results
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Thank you!


