
Learning Queuing Networks by
Recurrent Neural Networks

Giulio Garbi, Emilio Incerto and Mirco Tribastone
IMT School for Advanced Studies Lucca

Lucca, Italy
giulio.garbi@imtlucca.it

ICPE 2020 Virtual Conference
April 20—24, 2020

Motivation

• Performance means revenue
• «We are not the fastest retail site on the internet today» [Walmart, 2012]
• «[…] page speed will be a ranking factor for mobile searches.» [Google]

è It’s worth investing in system performance. How?

Garbi, Incerto, Tribastone 2

Motivation

• Question: where to invest?
• Performance estimation:
• Profiling: easy, does not predict
• Modeling: needs expert and

continuous update, predictions

Garbi, Incerto, Tribastone 3

Motivation: our vision

• If we had a model, we could try all possible choices, forecast and
choose the best option.

è Automate model generation!!!

Garbi, Incerto, Tribastone 4

Our Main Contribution

• Direct association between:
• Model: Fluid Approximation of Closed Queuing Networks
• Automation: Recurrent Neural Networks

• Automatic generation of models from data

Garbi, Incerto, Tribastone 5

Model: Queuing Networks

• Model that represent contention
of resources by clients
• Clients ask for work to station

(resources)
• Stations have a maximum

concurrency level, and a speed
• Clients once served ask another

resource according to routing
matrix

<µ1, s1>

<µ2, s2>

<µ3, s3>

P1,2

P1,3

P2,1

P3,1

x1

x3

x2

Garbi, Incerto, Tribastone 6

Model of a system

• Resource è hardware
• Routing matrix è program code
• Clients è program instances

<µ1, s1>

<µ2, s2>

<µ3, s3>

P1,2

P1,3

P2,1

P3,1

x1

x3

x2

Garbi, Incerto, Tribastone 7

How our procedure works

Garbi, Incerto, Tribastone 8

Profiling Learning Model PredictionChanges

&HOO 1 &HOO 2 &HOO H-1

�-¨t��1

�-¨t��2�

�¨t�
� 2�P

2,1

V1

V2

Cell�h

min

min

∑

∑

�¨t��1 �P1,2

�-¨t��0�

VM min ∑

Recurrent Neural Networks

• Recurrent neural networks (RNN) work with sequences (e.g. time
series)
• We will encode the model as a RNN with a custom structure.

Garbi, Incerto, Tribastone 9

�-¨t��1

�-¨t��2�

�¨t�
� 2�P

2,1

V1

V2

Cell�h

min

min

∑

∑

�¨t��1 �P1,2

�-¨t��0�

VM min ∑

�-¨t��1

�-¨t��2�

�¨t�
� 2�P

2,1

V1

V2

Cell�h

min

min

∑

∑

�¨t��1 �P1,2

�-¨t��0�

VM min ∑

Recurrent Neural Networks

• The system parameters are directly encoded in the RNN cell
èLearned model explains the system! (Explainable Neural Network)
• We can modify the system afterwards to do prediction!

Garbi, Incerto, Tribastone 10

&HOO 1 &HOO 2 &HOO H-1

�-¨t��1

�-¨t��2�

�¨t�
� 2�P

2,1

V1

V2

Cell�h

min

min

∑

∑

�¨t��1 �P1,2

�-¨t��0�

VM min ∑

�-¨t��1

�-¨t��2�

�¨t�
� 2�P

2,1

V1

V2

Cell�h

min

min

∑

∑

�¨t��1 �P1,2

�-¨t��0�

VM min ∑

�-¨t��1

�-¨t��2�

�¨t�
� 2�P

2,1

V1

V2

Cell�h

min

min

∑

∑

�¨t��1 �P1,2

�-¨t��0�

VM min ∑

Synthetic case studies: setting

• 10 random systems: five with M=5 stations, five with M=10 stations
• Concurrency levels between 15 and 30
• Service rate between 4 and 30 clients/time unit
• 100 traces, each one being an average of 500 executions, with

[0, 40 M] clients
• Learning time: 74 min for M = 5 and 86 min for M = 10
• Error function: % clients wrongly placed

Garbi, Incerto, Tribastone 11

Synthetic case studies: prediction with
different #clients

100 200 300 400 500 600 700 800
N

0

2

4

6

8

10

P
re

d
ic

tio
n
 e

rr
o
r

(e
rr

)

M=5
M=10 No significant difference

among network size and
number of clients.
è Good predictive
power among different
conditions

Garbi, Incerto, Tribastone 12

#clients

Synthetic case studies: prediction with
different concurrency levels

50 100 150 200 250
N

0

1

2

3

4

5

P
re

d
ic

tio
n
 e

rr
o
r

(e
rr

)

M=5
M=10

Increased concurrency as
to resolve the bottleneck
è Learning outcome
resilient to changes in
part of the network

Garbi, Incerto, Tribastone 13

#clients

Real case study: setting

• node.js web application, replicated
3 times
• Python script simulates N clients
• Learning time: 27 min for N=26

Garbi, Incerto, Tribastone 14

LB

C1

C2

W

5EAL 6<67EM A5CHI7EC785E

C�

4N MODEL

10
3URFHVVHV

5
3URFHVVHV

6
3URFHVVHV

1
3URFHVV

N
3URFHVVHV

8NKNO:N 3A5AME7E56

�ǋ1,V1 �!

M2

M3

�ǋ2,V2 10!

�ǋ3,V3 5!

�ǋ4,V� 6!

31,2

31,3

32,1

33,1

3�,1

31,�

M1

M4

M1

M2

M3

M4

Real case study: prediction with different
#clients

0 1 2 3 4 5 6
t(s)

0

5

10

15

20

25

30

35

40

45

Q
u
e
u
e
 L

e
n
g
th

M
1
 RNN-learned QN

M
1
 Real System

M
2
 RNN-learned QN

M
2
 Real System

M
3
 RNN-learned QN

M
3
 Real System

M
4
 RNN-learned QN

M
4
 Real System

M3 is the bottleneck, and this affects the UX. We need to solve it…
Garbi, Incerto, Tribastone 15

0 1 2 3 4 5 6
t(s)

0

10

20

30

40

50

60

70

Q
u
e
u
e
 L

e
n
g
th

M
1
 RNN-learned QN

M
1
 Real System

M
2
 RNN-learned QN

M
2
 Real System

M
3
 RNN-learned QN

M
3
 Real System

M
4
 RNN-learned QN

M
4
 Real System

0 1 2 3 4 5 6
t(s)

0

10

20

30

40

50

60

70

80

Q
u
e
u
e
 L

e
n
g
th

M
1
 RNN-learned QN

M
1
 Real System

M
2
 RNN-learned QN

M
2
 Real System

M
3
 RNN-learned QN

M
3
 Real System

M
4
 RNN-learned QN

M
4
 Real System

0 1 2 3 4 5 6
t(s)

0

10

20

30

40

50

60

70

80

90

Q
u
e
u
e
 L

e
n
g
th

M
1
 RNN-learned QN

M
1
 Real System

M
2
 RNN-learned QN

M
2
 Real System

M
3
 RNN-learned QN

M
3
 Real System

M
4
 RNN-learned QN

M
4
 Real System

N = 52
err = 6.46%

N = 104
err = 6.45%

N = 78
err = 5.03%

N = 130
err = 9.05%

45
40
35
30
25
20
15
10
5
0

t(s)
0 1 2 3 4 5 6

Q
ue

ue
 L

en
gt

h

70
60
50
40
30
20
10
0

t(s)
0 1 2 3 4 5 6

Q
ue

ue
 L

en
gt

h

80
70
60
50
40
30
20
10
0

t(s)
0 1 2 3 4 5 6

Q
ue

ue
 L

en
gt

h

90
80
70
60
50
40
30
20
10
0

t(s)
0 1 2 3 4 5 6

Q
ue

ue
 L

en
gt

h

Real case study: prediction with different
structure
…by increasing the concurrency level of M3

err: 5.98%

0 1 2 3 4 5 6
t(s)

0

10

20

30

40

50

60

70

80

90

Q
u
e
u
e
 L

e
n
g
th

M
1
 RNN-learned QN

M
1
 Real System

M
2
 RNN-learned QN

M
2
 Real System

M
3
 RNN-learned QN

M
3
 Real System

M
4
 RNN-learned QN

M
4
 Real System

…by changing the LB scheduling policy
err: 6.10%

0 1 2 3 4 5 6
t(s)

0

10

20

30

40

50

60

70

80

90

Q
u

e
u

e
 L

e
n

g
th

M
1
 RNN-learned QN

M
1
 Real System

M
2
 RNN-learned QN

M
2
 Real System

M
3
 RNN-learned QN

M
3
 Real System

M
4
 RNN-learned QN

M
4
 Real System

Garbi, Incerto, Tribastone 16

Bottleneck solved. Nice results also on a real HW+SW system.

Limits

• Many traces required to learn the system.
• System must be observed at high frequency.
• Layered systems currently not supported.
• Resilient to limited changes, not extensive ones.

Garbi, Incerto, Tribastone 17

Related work

• Performance models from code (e.g. PerfPlotter, not predictive)
• Modelling black-box systems (e.g. Siegmund et al., tree-structured

models)
• Program-driven generation of models (e.g. Hrischuk et al., distributed

components that communicate via RPC)
• Estimation of service demands in QN through several techniques (we

estimate service demands and routing matrix)

Garbi, Incerto, Tribastone 18

Conclusions

• We provided a method to estimate QN parameters using a RNN that
converges on feasible parameters.
• With the estimated parameters, it is possible to estimate the

evolution of the system using a population different from the one
used during learning or when doing structural modifications.
• We want to apply the technique to more complex systems (e.g

LQN,multiclass), use other learning methodologies (e.g. neural ODEs)
and improve the accuracy of the results

Garbi, Incerto, Tribastone 19

Thank you!

