Learning Queuing Networks by Recurrent Neural Networks

Giulio Garbi, Emilio Incerto and Mirco Tribastone

IMT School for Advanced Studies Lucca

Lucca, Italy

giulio.garbi@imtlucca.it

ICPE 2020 Virtual Conference

April 20—24, 2020
Motivation

• Performance means revenue
 • «We are not the fastest retail site on the internet today» [Walmart, 2012]
 • «[...] page speed will be a ranking factor for mobile searches.» [Google]

➤ It’s worth investing in system performance. How?
Motivation

• Question: where to invest?
• Performance estimation:
 • Profiling: easy, does not predict
 • Modeling: needs expert and continuous update, predictions
Motivation: our vision

• If we had a model, we could try all possible choices, forecast and choose the best option.

➡ Automate model generation!!!
Our Main Contribution

• Direct association between:
 • Model: Fluid Approximation of Closed Queuing Networks
 • Automation: Recurrent Neural Networks

• Automatic generation of models from data
Model: Queuing Networks

• Model that represent contention of resources by clients
• Clients ask for work to station (resources)
• Stations have a maximum concurrency level, and a speed
• Clients once served ask another resource according to routing matrix
Model of a system

- Resource ➔ hardware
- Routing matrix ➔ program code
- Clients ➔ program instances
How our procedure works

Profiling → Learning → Model → Changes → Prediction
Recall Neural Networks

• Recurrent neural networks (RNN) work with sequences (e.g. time series)
• We will encode the model as a RNN with a custom structure.
Recurrent Neural Networks

• The system parameters are directly encoded in the RNN cell
 ➔ Learned model explains the system! (Explainable Neural Network)
• We can modify the system afterwards to do prediction!
Synthetic case studies: setting

• 10 random systems: five with M=5 stations, five with M=10 stations
• Concurrency levels between 15 and 30
• Service rate between 4 and 30 clients/time unit
• 100 traces, each one being an average of 500 executions, with [0, 40 M] clients
• Learning time: 74 min for M = 5 and 86 min for M = 10
• Error function: % clients wrongly placed
Synthetic case studies: prediction with different #clients

No significant difference among network size and number of clients.

🚀 Good predictive power among different conditions
Synthetic case studies: prediction with different concurrency levels

Increased concurrency as to resolve the bottleneck
→ Learning outcome resilient to changes in part of the network
Real case study: setting

- node.js web application, replicated 3 times
- Python script simulates N clients
- Learning time: 27 min for N=26
Real case study: prediction with different #clients

\[M_3 \] is the bottleneck, and this affects the UX. We need to solve it...
Real case study: prediction with different structure

...by increasing the concurrency level of M_3
err: 5.98%

...by changing the LB scheduling policy
err: 6.10%

Bottleneck solved. Nice results also on a real HW+SW system.
Limits

- Many traces required to learn the system.
- System must be observed at high frequency.
- Layered systems currently not supported.
- Resilient to limited changes, not extensive ones.
Related work

• Performance models from code (e.g. PerfPlotter, not predictive)
• Modelling black-box systems (e.g. Siegmund et al., tree-structured models)
• Program-driven generation of models (e.g. Hrischuk et al., distributed components that communicate via RPC)
• Estimation of service demands in QN through several techniques (we estimate service demands and routing matrix)
Conclusions

• We provided a method to estimate QN parameters using a RNN that converges on feasible parameters.

• With the estimated parameters, it is possible to estimate the evolution of the system using a population different from the one used during learning or when doing structural modifications.

• We want to apply the technique to more complex systems (e.g. LQN, multiclass), use other learning methodologies (e.g. neural ODEs) and improve the accuracy of the results.
Thank you!