facebook

INFRASTRUCTURE

Optimizing Interrupt Handling
Performance for Memory Failures in
Large Scale Data Centers

Harish Dattatraya Dixit, Fred Lin, Bill Holland, Matt Beadon,
Zhengyu Yang, Sriram Sankar

Hardware Sustaining. Facebook.

ﬂ MAP : 2.45B Q MAP : 1.3B
MAP: 1B ‘Q' MAP : 1.6B

Globally, there are more than 2.8B people using Facebook, WhatsApp, Instagram or
Messenger each month.

0 © © do ® g o
-e . . o—e]] e
2004 2005 2006 2007 2008 2009 2010 20m 2012 2013 2014 2015 2016 2017 2018 2019
FACEBOOK

*MAP - Monthly Active People
Source: Facebook data, Q4 2019

https://investor.fb.com/investor-events/event-details/2019/Facebook-Q3-2019-Earnings/default.aspx

L ' T - ' N e e — TR et

L Tk
= TSR "

e Server Architecture

* Intermittent Errors

* Memory Error Reporting
* Interrupt Handling

Contents

* System Management Interrupts (SMI)
* Corrected Machine Check Interrupts (CMCI)

* Experiment Infrastructure
e QObservations

Server Architecture

Compute Units

e Central Processing Unit (CPU) [DIMMSs] { F,)e_rl_p_h_eFaTS_\
e Graphics Processing Unit (GPU) 3 TPM |
Memory ! ! | [storage |
e Dual In-line Memory Modules (DIMM) () |
Storage }—ﬂ GPU
* Flash, Disks _ |
Network > JSB
» NIC, Cables CPUs l\ NIC
Interfaces (_________
* PCle, USB | BMC L
Monitoring N~ I I \‘[fan controller
* Baseboard Management v v v

Controller (BMC)
e Sensors, Hot Swap Controller (HSC)

[sensors | [Hsc |

——— e — —— — — — — — — — — — — —

Intermittent Errors — Occurrence and Impact

.‘II‘
D -
E DIMMs 1] -

E EE EEEEEEEEEEEEEEEEEEEEETSRN HD

Storage
(Ex: Flash, Disks)

i —
s e

=
-—

Network n
(Ex: NICs, Cables) }l
|

Interfaces
(Ex: PCle, USB) 0—%0

Memory Error Reporting

>

A

F---

System Management Interrupts

SMI Trigger:
Memory correctable errors

SMI Handling:

System Management Mode (SMM)

Pause all CPU Cores

Perform Correctable
Error (CE) Logging

Capture Physical Address of the error

Return from SMM

TTTEEEEEEEEEEEEEEmEmmmm———e— 1
: Processor : [Platform]
[[
[I
[[
1 ([
I 4 Firmware Logging
[YT
[I SMI 1 Handler
A :
l
L i
L . N
R I I
| NMI Handler 1] | Machine Check Handler l
_ OS Error Handling y

Corrected Machine Check Interrupts

CMCI Trigger:
Memory correctable errors

CMCI Handling:

Invoke CMCI Handler

EDAC kernel driver for error data
collection

Repeat every specified
polling interval duration

1. Collect CEs from each core

2. Aggregate CEs

3. Log aggregated CEs (count per poll)
[randomly assigned core]

CPU stall on 1 core

-

[Processor] [Platform]
|)
[SMI
Logging Handler
| | Firmware
y,
| o]
‘ NMI Handler L_____1 Machine Check
i Handler
CMCI Handler :

OS Error Handling

10

Experiment Infrastructure

Failure Detection — MachineChecker

* Runs hardware checks periodically

* Host ping, memory, CPU, NIC, dmesg,
S.M.A.R.T., power supply, SEL, etc.

create alertif a
server check fails

run periodically
and collect output

Alert
Manager

MachineChecker

On the machine Off the machine

Experiment Infrastructure

Failure Detection — MachineChecker

create alertif a
server check fails

Failure Digestion — FBAR

 Facebook Auto Remediation run periodically Alert
] i and collect output
* Picks up hardware failures, process logged Manager
information, and execute custom-made 1
remediation accordingly MachineChecker [e=—
—> FBAR

On the machine Off the machine

12

Experiment Infrastructure

Failure Detection — MachineChecker

create alertif a
server check fails

Failure Digestion — FBAR

run periodically
and collect output

Alert
Manager

Low-Level Software Fix — Cyborg
 Handles low-level software fixes such as
firmware update and reimaging

MachineChecker [«

On the machine Off the machine

13

Experiment Infrastructure

Failure Detection — MachineChecker
Failure Digestion — FBAR
Low-Level Software Fix — Cyborg

Manual Fix — Repair Ticketing

* Creates repair tickets for DC technicians to
carry out HW/SW fixes

* Provides detailed logs throughout the auto-
remediation

* Logs repair actions for further analysis

run periodically
and collect output

Daemon

MachineChecker

create alertif a
server check fails

Alert
Manager

l

FBAR

1

Cyborg

1

Repair
Ticketing

14

Experiment Infrastructure

Production System Setup

)) ()
() () ()
)) ()
)))
H H H
H H H
)))

Production Machines

S—

Configured with
Step1: SMI Mem. Reporting
Step2: CMCI Mem. Reporting

Remediation Policy

Swap Memory
at 10s of Correctable
Errors per second

Benchmarks

Repro Memory Errors:
Stressapptest

Detect Performance
Impact:

SPEC (Perlbench)

Fine grained
stall detector

15

Experiment Infrastructure

Memory errors in a production environment are random occurrences, and
have no fixed periodicity, seen in experimental error injection setup.

NV ALV AW ASAAVNCV A AN

1000 , ‘
/ l,
b
N .
10 MMHA A‘faﬂ,“'[“‘:““:
ST TN AN RS

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

e
S
-

Correctable error count / second
(log scale)

)] =h=M? =e=M3 Time (seconds)

16

Observation 1: System Management Interrupts (SMI) cause the machines to stall for hundreds of milli-seconds
based on the logging handler implementation. This is measurable performance impact to report corrected

errors.

Application Impact
Example Caching Service

Impact of SMI due to CEs:

CEs increase (6200 = 7300)

Default configs, trigger SMls
for every n errors (n=1000)

Stall all cores of a CPU for
100s of ms

Application request efficiency
drops by ~40%

120

Request efficiency (%)
N
)

S

0 20 40 60 80 100 120 140 160 180 200

Time (minutes)

=i+ Request Efficiency (%)

—k— Correctable Errors

(@)
(\®)
()
()
Correctable error count

17

Observation 2: Benchmarks like perlbench within SPEC are useful to quantify system performance. For variable
events, we need to augment the benchmarks with fine-grained detectors to capture performance deviations.

40 37.17 37.13
Detect performance impact using benchmarking 35
30
Perlbench o 25
 Compare scores with and without SMI stalls. S 50
* Benchmarks return same scores £ s

=
. < 10
Stall detection g 5
e CPU Stall duration: 100s of ms 0
* Fine-grained stall detection to observe CPU stalls perlbench perlbench
(+stressapp) (tstressapp +
CEs)

Stressapptest: Helps surface memory 4_I

correctable errors due to bad DIMMs

No difference observed in scores with or
without Correctable Errors (and the SMI stalls)

18

Minimizing performance impact using CMCI interrupts

CMCI Trigger:
Memory correctable errors

CMCI Handling:

Invoke CMCI Handler

EDAC kernel driver for error data
collection

Repeat every specified
polling interval duration

1. Collect CEs from each core

2. Aggregate CEs

3. Log aggregated CEs
(randomly assigned core)

CPU stall on 1 core

‘ NMI Handler

Handler

[Processor] [Platform]
|)
[SMI
Logging Handler
| | Firmware)
| o]
‘ I ! Machine Check

OS Error Handlingj

19

Observation 3: SMI are several times more computationally expensive than CMCI for correctable memory error

reporting in a production environment.

SMI vs CMCI performance impact

SMI:

e Stall all cores

* Provide full physical
address of the error

CMCI:
e Stall 1 CPU core

Graph:
SMI stall time vs CMCI stall time
vs Number of Errors

3500

2000

Cumulative stalll time (ms)

500 fwm" — I/ I
, la i i

1000 2000 3000 4000 5000 6000 7000 8000
Number of correctable errors
m SMI (all cores) m CMCI (1 core)

Results hold for M1, M2, M3 machine types since the stalls are
a function of error counts. 20

Observation 4: We see that with increased polling interval, the amount of time spent in individual aggregate

logging by the EDAC driver increases.

Every Polling Interval
 Log aggregated CEs
(randomly assigned core)
e CPUstall on 1 core

Optimizing Polling Interval
* Tradeoff
* Error visibility frequency vs
Individual CPU stall
* Modify polling interval
e Obtain maximum individual
stall times per core

1400

—_— —_
-] [\
-)
O O

800

600

400

Largest individual stall (in ms)

200

1242 1244

1178
- |I II II || ‘\ ‘\ || ||

10 20 30 35 40
EDAC polhng 1nterva1 (in seconds)

21

Observation 5: We see that with an increased polling interval for EDAC, frequent context switches are reduced.
Hence the total time a machine spends in stalls will be reduced.

Every Polling Interval
 Log aggregated CEs
(randomly assigned core)

~35000 33869 33520
* CPUstall on 1 core 2 31641 30697
.= 30000 27845
Optimizing Polling Interval 2 25000 24014
e Tradeoff = 20000
* Error visibility frequency vs 15000
10756
* Modify polling interval 5000
* Obtain total stall times .
1 2 4 6 8

10 20 30 35 40
EDAC polling interval (in seconds)

45000

40000 3775 38726

Total st

22

Observation 6: With increased polling interval for EDAC, we run the risk of overflow in error aggregation.

Every Polling Interval
* Log aggregated CEs
(randomly assigned core)
e CPU stall on 1 core

Optimizing Polling Interval
* Tradeoff
* Error visibility vs
CPU stalls
* Modify polling interval
 Measure counter overflows
and error count variations

450
400
350

Errors lost per poll

—_ —_ (\®) \O) W

nw O U O U D
S & &5 & & 3

()

120 I

0

_
S
\O

0O 0 000 0 O0O00O0

— AN <t O o0 O O O wn
— N on N

40 13

EDAC polling interval (in seconds)

[\
240 I

421
-
Y
v

23

Minimizing performance impact using CMCI interrupts

Recommendations:

* For measuring 10s of CEs

per second, use CMCI

e At polling interval of ~37s

Tradeoff:
Error visibility

Maximized

Total Stall time

Minimized

45000
40000
35000
30000
25000
20000
15000
10000
5000
0

Total stall time (ms)

433250

1 4

K ~
31641 30697 1\2 7845 /

——t o +—t—e — 4

1 2 4 6 8

~ A 24014
\

\
\

A

10756 ~A

10 20 30 35

EDAC polling interval (seconds)

—4&- Total Stall Time (ms)

=¢=] 0ss Of Errors

8664

40

Missed error count per poll

24

Post Package Repair (PPR)

Memory Error Repair Mems
* DDRA4 Feature EERRERER 111
 Remaps faulty cells to healthy cells in memory T T
e Requires physical address for performing PPR
* SMI provides physical address of error.
* CMCI doesn’t provide physical address.

Bad Bit Remapped Bit
[Post Package Repair]

 Hard PPR (Preferred)
* Persistent across reboots
* Soft PPR

* Not persistent across reboots

To overcome this,
Use a hybrid approach, CMCI in production flow,

SMI in remediation flow
25

Hybrid Error Reporting Approach

run periodically
and collect output

Daemon

Alert
Manager

l

FBAR

\

Reduce SMI
trigger thresholds

Change
Interrupts
(CMCI to SMI)

Production Machine MachineChecker
(CMCI Interrupt) ~> (Iferror >PPR [==mmmmm e
threshold)
Change Perform Run Benchmarks
PR PR
Interrupts Hard PPR (Memory Stress)
(SMI to CMCI)

26

Conclusion

SMI vs CMCI

SMIs results in stalls of 100s of ms in
production environments
Benchmarks can be augmented to be
sensitive to fine-grained stalls.

CMCI more efficient for reporting
memory errors in production.

CMCI can further be optimized by
tweaking polling intervals.

PPR

Hybrid implementation to reduce perf
impact in production, and obtain
benefits of PPR

W
(9,
]
)

3000
2500
2000
1500

Cumulative stalll time (ms)

1000
50

o O

45000
40000
35000
30000
25000
20000
15000
10000

5000

Total stall time (ms)

mSMI (all cores)

1000 2000 3000 4000 5000 6000 7000 8000
Number of correctable errors

m CMCI (1 core)

1 2 4 6

8

.
10

. .
20 30 35

EDAC polling interval (seconds)

—&=—Total Stall Time (ms)

=8=] 0ss Of Errors

40

Missed error count per poll

27

facebook Questions

facebook Thank you

facebook

	Slide Number 1
	Optimizing Interrupt Handling Performance for Memory Failures in Large Scale Data Centers
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Questions
	Thank you
	Slide Number 30

